📄 evluation.m
字号:
function [F1,F11,Pg,Qg,Qloss] = evluation(p1,q1,c, t, k,kk);
%
% testsopf(casename, which_flow)
%
% Runs a full Newton's method power flow where casename is the name of
% the m-file (without the .m extension) containing the power flow data,
%
% which_flow ==> 1: opf; 0: load flow
%
% You can change options vector (see 'help mpoption' for details).
% Uses default 'case' if 1st parameter is not given.
%% --- define names for columns to data matrices
PQ=1; PV=2; REF=3; NONE=4; BUS_I=1; BUS_TYPE=2; PD=3; QD=4; GS=5; BS=6; BUS_AREA=7;
VM=8; VA=9; BASE_KV=10; ZONE=11; VMAX=12; VMIN=13; LAM_P=14; LAM_Q=15; MU_VMAX=16; MU_VMIN=17;
GEN_BUS=1; PG=2; QG=3; QMAX=4; QMIN=5; VG=6; MBASE=7; GEN_STATUS=8; PMAX=9; PMIN=10;
MU_PMAX=11; MU_PMIN=12; MU_QMAX=13; MU_QMIN=14; % MU: KT multiplier
F_BUS=1; T_BUS=2; BR_R=3; BR_X=4; BR_B=5; % standard notation (in input)
RATE_A=6; RATE_B=7; RATE_C=8; TAP=9; SHIFT=10; BR_STATUS=11; % standard notation (in input)
PF=12; QF=13; PT=14; QT=15; MU_SF=16; MU_ST=17; % MU_SF: idx of MU on MVA lim at f bus (in opf)
% --- read data
[baseMVA, bus, gen, branch, area, gencost] = feval('case1',p1,q1,c, t, k);
% --- convert bus numbering to internal bus numbering
i2e = bus(:, BUS_I);
e2i = zeros(max(i2e), 1);
e2i(i2e) = [1:size(bus, 1)]';
bus(:, BUS_I) = e2i( bus(:, BUS_I) );
gen(:, GEN_BUS) = e2i( gen(:, GEN_BUS) );
branch(:, F_BUS)= e2i( branch(:, F_BUS) );
branch(:, T_BUS)= e2i( branch(:, T_BUS) );
% --- preliminary calculations
%[ref, pv, pq] = bustypes(bus, gen); % sort out bus types
ref = find(bus(:, BUS_TYPE) == REF); %% reference bus index
pv = find(bus(:, BUS_TYPE) == PV ); %% PV bus indices
pq = find(bus(:, BUS_TYPE) == PQ ); %% PQ bus indices
if isempty(ref); fprinft('\n -- OOPS, no reference bus, check data! -- \n'); return; end
% -------- get constants, initial states ----------
nb = size(bus, 1); nl = size(branch, 1); npv = length(pv); npq = length(pq); ng = npv + 1;
ref = find(bus(:, BUS_TYPE) == REF); pvpq = [1:ref-1, ref+1:size(bus, 1)]; gbus = gen(:, GEN_BUS);
[Ybus, Yf, Yt] = makeYbus(baseMVA, bus, branch); % build admitance matrix
% --- call newtonpf.m
verbose = 0;
% compute complext bus injections
gbus = gen(:, GEN_BUS); % at what buses are they at?
Sbus = -(bus(:, PD) + sqrt(-1) * bus(:, QD)); %% power injected by loads
Sbus(gbus) = Sbus(gbus) + gen(:, PG) + sqrt(-1) * gen(:, QG) ; %% plus generation
Sbus = Sbus /baseMVA; % convert to p.u system
V0 = bus(:, VM) .* exp(sqrt(-1) * pi/180 * bus(:, VA));
V0(gen(:, GEN_BUS)) = gen(:, VG) ./ abs(V0(gen(:, GEN_BUS))).* V0(gen(:, GEN_BUS));
[V, success, iterations] = newtonpf(Ybus, Sbus, V0, ref, pv, pq, verbose);
[bus, gen, branch] = pfsoln(baseMVA, bus, gen, branch, Ybus, Yf, Yt, V, ref, pv, pq);
f=zeros(10,1); %% Matlab6 requires all variables be defined, so f, et have to be defined.
Pg = gen(:, PG)/baseMVA; Qg=gen(:, QG)/baseMVA; Va = angle(V(pvpq)); Vm = abs(V);
LOSS = sum(gen(:, PG))-sum(bus(:, PD));
%%------evalution the objective function-----------%%
Sbus = -(bus(:, PD) + sqrt(-1) * bus(:, QD)); %% power injected by loads
Sbus(gbus) = Sbus(gbus) + gen(:, PG) + sqrt(-1) * gen(:, QG); %% plus generation
Sbus = Sbus /baseMVA; % convert to p.u system
mis = V .* conj(Ybus * V) - Sbus; %% evaluate power flow equations
g1= [ real(mis);
imag(mis) ];
g2= [ bus(:, VMIN) - Vm; %% Vmim
Vm - bus(:, VMAX)];
g3= [ gen(:, QMIN)/baseMVA - Qg; %% Qgmin
Qg - gen(:, QMAX)/baseMVA ];
Pp1 = max(0,g1);
Pp = sum(Pp1.*Pp1);
Pv1 = max(0,g2);
Pv = sum(Pv1.*Pv1);
Pq1 = max(0,g3);
Pq=sum(Pq1.*Pq1);
%%------evalution the objective function-----------%%
F1 = LOSS;
F11 = F1+kk(2,1)*(Pv)+kk(3,1)*(Pq);
[Ploss,Qloss]=output(baseMVA, bus, gen, branch, f, success);
%%printpf(baseMVA, bus, gen, branch, f, success, et, 1, verbose);
return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -