📄 wm_bruyn_e.c
字号:
double mean_1A, mean_1B, mean_2A, mean_2B, mean_1, mean_2; double mean__1A, mean__1B, mean__2A, mean__2B; int n_1A, n_1B, n_2A, n_2B, n_1, n_2; int var_1A, var_1B, var_2A, var_2B; int zone1_ok, zone2_ok; // find an unused block randomly, depending on seed do { xb = random() % (cols / blocksize); yb = random() % (rows / blocksize); } while (add_coord(coords, xb, yb) < 0); // copy image block copy_grays_to_block(block, image, xb * blocksize, yb * blocksize, blocksize, blocksize); if (verbose > 0) fprintf(stderr, "embedding bit #%d (= %d) in block at (%d/%d)\n", n, get_signature_bit(n), xb * blocksize, yb * blocksize); if (verbose > 8) { print_grays(image, xb * blocksize, yb * blocksize, blocksize, blocksize); fprintf(stderr, "\n"); } // sort luminance values in block to represent increasing function F sort_grays(block[0], n_block); if (verbose > 8) { print_grays(block, 0, 0, blocksize, blocksize); fprintf(stderr, "\n"); } // calculate slopes of F and determine smax, the max. slope of F // the index where smax occures is called alpha alpha = 0; smax = 0.0; for (i = 0; i < n_block - 1; i++) { slope[i] = block[0][i + 1] - block[0][i]; if (slope[i] > smax) { smax = slope[i]; alpha = i; } } slope[n_block - 1] = 0; // block type classification blocktype = BLOCKTYPE_UNKNOWN; if (smax < threshold_noise) { // block has noise contrast blocktype = BLOCKTYPE_NOISE; beta_minus = beta_plus = alpha; } else { // block has progressive or hard contrast, let's find out... beta_minus = alpha - 1; while (beta_minus >= 0 && smax - slope[beta_minus] <= threshold_slope) beta_minus--; beta_plus = alpha + 1; while (beta_plus < n_block && smax - slope[beta_plus] <= threshold_slope) beta_plus++; if (beta_minus + 1 == alpha && beta_plus - 1 == alpha) blocktype = BLOCKTYPE_HARD; else blocktype = BLOCKTYPE_PROGRESSIVE; } if (verbose > 1) { fprintf(stderr, "blocktype: %d\n", blocktype); fprintf(stderr, "Smax = %lf, alpha = %d, beta- = %d, beta+ = %d\n", smax, alpha, beta_minus, beta_plus); } // block pixel classification for (i = 0; i < blocksize; i++) for (j = 0; j < blocksize; j++) { gray pixel = image[yb * blocksize + j][xb * blocksize + i]; zone[j][i] = ZONE_VOID; switch (blocktype) { case BLOCKTYPE_PROGRESSIVE: case BLOCKTYPE_HARD: if (pixel < block[0][beta_minus]) zone[j][i] = ZONE_1; else if (pixel > block[0][beta_plus]) zone[j][i] = ZONE_2; break; case BLOCKTYPE_NOISE: if (pixel < block[0][n_block / 2]) zone[j][i] = ZONE_1; else if (pixel > block[0][n_block / 2]) zone[j][i] = ZONE_2; break; default: fprintf(stderr, "%s: invalid block type\n", progname); break; } } if (verbose > 8) { print_grays(zone, 0, 0, blocksize, blocksize); fprintf(stderr, "\n"); } // calculate mean values for zone/categories mean_1A = mean_1B = mean_2A = mean_2B = mean_1 = mean_2 = 0.0; n_1A = n_1B = n_2A = n_2B = n_1 = n_2 = 0; for (i = 0; i < blocksize; i++) for (j = 0; j < blocksize; j++) { gray pixel = image[yb * blocksize + j][xb * blocksize + i]; int pixel_zone = zone[j][i]; int pixel_category = CATEGORY_VOID; if (pixel_zone == ZONE_1) pixel_category = category1[j][i]; else if (pixel_zone == ZONE_2) pixel_category = category2[j][i]; switch (pixel_zone | pixel_category) { case CLASSIFICATION_1A: n_1++; n_1A++; mean_1A += pixel; mean_1 += pixel; break; case CLASSIFICATION_1B: n_1++; n_1B++; mean_1B += pixel; mean_1 += pixel; break; case CLASSIFICATION_2A: n_2++; n_2A++; mean_2A += pixel; mean_2 += pixel; break; case CLASSIFICATION_2B: n_2++; n_2B++; mean_2B += pixel; mean_2 += pixel; break; } } if (n_1 && n_1A && n_1B) { mean_1 /= (double) n_1; mean_1A /= (double) n_1A; mean_1B /= (double) n_1B; zone1_ok = 1; } else { mean_1 = mean_1A = mean_1B = 0.0; zone1_ok = 0; if (verbose > 0) fprintf(stderr, "zone 1 unusable\n"); } if (n_2 && n_2A && n_2B) { mean_2 /= (double) n_2; mean_2A /= (double) n_2A; mean_2B /= (double) n_2B; zone2_ok = 1; } else { mean_2 = mean_2A = mean_2B = 0.0; zone2_ok = 0; if (verbose > 0) fprintf(stderr, "zone 2 unusable\n"); } if (!skipping && !zone1_ok && !zone2_ok) { // pathological case - can it ever happen? if (verbose > 0) fprintf(stderr, "block skipped\n"); continue; } if (verbose > 2) { fprintf(stderr, "m_1 = %lf, m_1A = %lf, m_1B = %lf\n", mean_1, mean_1A, mean_1B); fprintf(stderr, "m_2 = %lf, m_2A = %lf, m_2B = %lf\n", mean_2, mean_2A, mean_2B); } // calculate new mean values required by embedding rule if (get_signature_bit(n)) { if (zone1_ok) { mean__1A = (mean_1 * (double) (n_1A + n_1B) + (double) n_1B * quality) / (double) (n_1A + n_1B); mean__1B = mean__1A - quality; } if (zone2_ok) { mean__2A = (mean_2 * (double) (n_2A + n_2B) + (double) n_2B * quality) / (double) (n_2A + n_2B); mean__2B = mean__2A - quality; } } else { if (zone1_ok) { mean__1A = (mean_1 * (double) (n_1A + n_1B) - (double) n_1B * quality) / (double) (n_1A + n_1B); mean__1B = mean__1A + quality; } if (zone2_ok) { mean__2A = (mean_2 * (double) (n_2A + n_2B) - (double) n_2B * quality) / (double) (n_2A + n_2B); mean__2B = mean__2A + quality; } } // calculate luminance variations if (zone1_ok) { var_1A = rint(mean__1A - mean_1A); var_1B = rint(mean__1B - mean_1B); } else var_1A = var_1B = 0; if (zone2_ok) { var_2A = rint(mean__2A - mean_2A); var_2B = rint(mean__2B - mean_2B); } else var_2A = var_2B = 0; if (verbose > 2) { if (zone1_ok) fprintf(stderr, "m*_1A = %lf, m*_1B = %lf\n", mean__1A, mean__1B); if (zone2_ok) fprintf(stderr, "m*_2A = %lf, m*_2B = %lf\n", mean__2A, mean__2B); fprintf(stderr, "var %d %d %d %d\n", var_1A, var_1B, var_2A, var_2B); } // apply luminance variations to image pixels for (i = 0; i < blocksize; i++) for (j = 0; j < blocksize; j++) { int pixel = image[yb * blocksize + j][xb * blocksize + i]; int pixel_zone = zone[j][i]; int pixel_category = CATEGORY_VOID; if (pixel_zone == ZONE_1) pixel_category = category1[j][i]; else if (pixel_zone == ZONE_2) pixel_category = category2[j][i]; switch (pixel_zone | pixel_category) { case CLASSIFICATION_1A: pixel = GRAYRANGE(pixel + var_1A); break; case CLASSIFICATION_1B: pixel = GRAYRANGE(pixel + var_1B); break; case CLASSIFICATION_2A: pixel = GRAYRANGE(pixel + var_2A); break; case CLASSIFICATION_2B: pixel = GRAYRANGE(pixel + var_2B); break; } image[yb * blocksize + j][xb * blocksize + i] = pixel; } n++; } free_grays(category2); free_grays(category1); free_grays(zone); free_grays(block); // write output image dimensions to output file pgm_writepgminit(out, cols, rows, maxval, 0); // write output image for (row = 0; row < rows; row++) pgm_writepgmrow(out, image[row], cols, maxval, 0); fclose(out); pgm_freearray(image, rows); exit(0);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -