📄 image.cpp
字号:
green = p;
blue = hsv.value;
break;
default: // case 5:
red = hsv.value;
green = p;
blue = hsv.value * (1.0 - hsv.saturation * f);
break;
}
}
return RGBValue((unsigned char)(red * 255.0),
(unsigned char)(green * 255.0),
(unsigned char)(blue * 255.0));
}
/*
* Rotates the hue of each pixel of the image. angle is a double in the range
* -1.0..1.0 where -1.0 is -360 degrees and 1.0 is 360 degrees
*/
void wxImage::RotateHue(double angle)
{
unsigned char *srcBytePtr;
unsigned char *dstBytePtr;
unsigned long count;
wxImage::HSVValue hsv;
wxImage::RGBValue rgb;
wxASSERT (angle >= -1.0 && angle <= 1.0);
count = M_IMGDATA->m_width * M_IMGDATA->m_height;
if (count > 0 && angle != 0.0)
{
srcBytePtr = M_IMGDATA->m_data;
dstBytePtr = srcBytePtr;
do
{
rgb.red = *srcBytePtr++;
rgb.green = *srcBytePtr++;
rgb.blue = *srcBytePtr++;
hsv = RGBtoHSV(rgb);
hsv.hue = hsv.hue + angle;
if (hsv.hue > 1.0)
hsv.hue = hsv.hue - 1.0;
else if (hsv.hue < 0.0)
hsv.hue = hsv.hue + 1.0;
rgb = HSVtoRGB(hsv);
*dstBytePtr++ = rgb.red;
*dstBytePtr++ = rgb.green;
*dstBytePtr++ = rgb.blue;
} while (--count != 0);
}
}
//-----------------------------------------------------------------------------
// wxImageHandler
//-----------------------------------------------------------------------------
IMPLEMENT_ABSTRACT_CLASS(wxImageHandler,wxObject)
#if wxUSE_STREAMS
bool wxImageHandler::LoadFile( wxImage *WXUNUSED(image), wxInputStream& WXUNUSED(stream), bool WXUNUSED(verbose), int WXUNUSED(index) )
{
return false;
}
bool wxImageHandler::SaveFile( wxImage *WXUNUSED(image), wxOutputStream& WXUNUSED(stream), bool WXUNUSED(verbose) )
{
return false;
}
int wxImageHandler::GetImageCount( wxInputStream& WXUNUSED(stream) )
{
return 1;
}
bool wxImageHandler::CanRead( const wxString& name )
{
if (wxFileExists(name))
{
wxFileInputStream stream(name);
return CanRead(stream);
}
wxLogError( _("Can't check image format of file '%s': file does not exist."), name.c_str() );
return false;
}
bool wxImageHandler::CallDoCanRead(wxInputStream& stream)
{
wxFileOffset posOld = stream.TellI();
if ( posOld == wxInvalidOffset )
{
// can't test unseekable stream
return false;
}
bool ok = DoCanRead(stream);
// restore the old position to be able to test other formats and so on
if ( stream.SeekI(posOld) == wxInvalidOffset )
{
wxLogDebug(_T("Failed to rewind the stream in wxImageHandler!"));
// reading would fail anyhow as we're not at the right position
return false;
}
return ok;
}
#endif // wxUSE_STREAMS
// ----------------------------------------------------------------------------
// image histogram stuff
// ----------------------------------------------------------------------------
bool
wxImageHistogram::FindFirstUnusedColour(unsigned char *r,
unsigned char *g,
unsigned char *b,
unsigned char r2,
unsigned char b2,
unsigned char g2) const
{
unsigned long key = MakeKey(r2, g2, b2);
while ( find(key) != end() )
{
// color already used
r2++;
if ( r2 >= 255 )
{
r2 = 0;
g2++;
if ( g2 >= 255 )
{
g2 = 0;
b2++;
if ( b2 >= 255 )
{
wxLogError(_("No unused colour in image.") );
return false;
}
}
}
key = MakeKey(r2, g2, b2);
}
if ( r )
*r = r2;
if ( g )
*g = g2;
if ( b )
*b = b2;
return true;
}
bool
wxImage::FindFirstUnusedColour(unsigned char *r,
unsigned char *g,
unsigned char *b,
unsigned char r2,
unsigned char b2,
unsigned char g2) const
{
wxImageHistogram histogram;
ComputeHistogram(histogram);
return histogram.FindFirstUnusedColour(r, g, b, r2, g2, b2);
}
// GRG, Dic/99
// Counts and returns the number of different colours. Optionally stops
// when it exceeds 'stopafter' different colours. This is useful, for
// example, to see if the image can be saved as 8-bit (256 colour or
// less, in this case it would be invoked as CountColours(256)). Default
// value for stopafter is -1 (don't care).
//
unsigned long wxImage::CountColours( unsigned long stopafter ) const
{
wxHashTable h;
wxObject dummy;
unsigned char r, g, b;
unsigned char *p;
unsigned long size, nentries, key;
p = GetData();
size = GetWidth() * GetHeight();
nentries = 0;
for (unsigned long j = 0; (j < size) && (nentries <= stopafter) ; j++)
{
r = *(p++);
g = *(p++);
b = *(p++);
key = wxImageHistogram::MakeKey(r, g, b);
if (h.Get(key) == NULL)
{
h.Put(key, &dummy);
nentries++;
}
}
return nentries;
}
unsigned long wxImage::ComputeHistogram( wxImageHistogram &h ) const
{
unsigned char *p = GetData();
unsigned long nentries = 0;
h.clear();
const unsigned long size = GetWidth() * GetHeight();
unsigned char r, g, b;
for ( unsigned long n = 0; n < size; n++ )
{
r = *p++;
g = *p++;
b = *p++;
wxImageHistogramEntry& entry = h[wxImageHistogram::MakeKey(r, g, b)];
if ( entry.value++ == 0 )
entry.index = nentries++;
}
return nentries;
}
/*
* Rotation code by Carlos Moreno
*/
// GRG: I've removed wxRotationPoint - we already have wxRealPoint which
// does exactly the same thing. And I also got rid of wxRotationPixel
// bacause of potential problems in architectures where alignment
// is an issue, so I had to rewrite parts of the code.
static const double gs_Epsilon = 1e-10;
static inline int wxCint (double x)
{
return (x > 0) ? (int) (x + 0.5) : (int) (x - 0.5);
}
// Auxiliary function to rotate a point (x,y) with respect to point p0
// make it inline and use a straight return to facilitate optimization
// also, the function receives the sine and cosine of the angle to avoid
// repeating the time-consuming calls to these functions -- sin/cos can
// be computed and stored in the calling function.
inline wxRealPoint rotated_point (const wxRealPoint & p, double cos_angle, double sin_angle, const wxRealPoint & p0)
{
return wxRealPoint (p0.x + (p.x - p0.x) * cos_angle - (p.y - p0.y) * sin_angle,
p0.y + (p.y - p0.y) * cos_angle + (p.x - p0.x) * sin_angle);
}
inline wxRealPoint rotated_point (double x, double y, double cos_angle, double sin_angle, const wxRealPoint & p0)
{
return rotated_point (wxRealPoint(x,y), cos_angle, sin_angle, p0);
}
wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool interpolating, wxPoint * offset_after_rotation) const
{
int i;
angle = -angle; // screen coordinates are a mirror image of "real" coordinates
bool has_alpha = HasAlpha();
// Create pointer-based array to accelerate access to wxImage's data
unsigned char ** data = new unsigned char * [GetHeight()];
data[0] = GetData();
for (i = 1; i < GetHeight(); i++)
data[i] = data[i - 1] + (3 * GetWidth());
// Same for alpha channel
unsigned char ** alpha = NULL;
if (has_alpha)
{
alpha = new unsigned char * [GetHeight()];
alpha[0] = GetAlpha();
for (i = 1; i < GetHeight(); i++)
alpha[i] = alpha[i - 1] + GetWidth();
}
// precompute coefficients for rotation formula
// (sine and cosine of the angle)
const double cos_angle = cos(angle);
const double sin_angle = sin(angle);
// Create new Image to store the result
// First, find rectangle that covers the rotated image; to do that,
// rotate the four corners
const wxRealPoint p0(centre_of_rotation.x, centre_of_rotation.y);
wxRealPoint p1 = rotated_point (0, 0, cos_angle, sin_angle, p0);
wxRealPoint p2 = rotated_point (0, GetHeight(), cos_angle, sin_angle, p0);
wxRealPoint p3 = rotated_point (GetWidth(), 0, cos_angle, sin_angle, p0);
wxRealPoint p4 = rotated_point (GetWidth(), GetHeight(), cos_angle, sin_angle, p0);
int x1 = (int) floor (wxMin (wxMin(p1.x, p2.x), wxMin(p3.x, p4.x)));
int y1 = (int) floor (wxMin (wxMin(p1.y, p2.y), wxMin(p3.y, p4.y)));
int x2 = (int) ceil (wxMax (wxMax(p1.x, p2.x), wxMax(p3.x, p4.x)));
int y2 = (int) ceil (wxMax (wxMax(p1.y, p2.y), wxMax(p3.y, p4.y)));
// Create rotated image
wxImage rotated (x2 - x1 + 1, y2 - y1 + 1, false);
// With alpha channel
if (has_alpha)
rotated.SetAlpha();
if (offset_after_rotation != NULL)
{
*offset_after_rotation = wxPoint (x1, y1);
}
// GRG: The rotated (destination) image is always accessed
// sequentially, so there is no need for a pointer-based
// array here (and in fact it would be slower).
//
unsigned char * dst = rotated.GetData();
unsigned char * alpha_dst = NULL;
if (has_alpha)
alpha_dst = rotated.GetAlpha();
// GRG: if the original image has a mask, use its RGB values
// as the blank pixel, else, fall back to default (black).
//
unsigned char blank_r = 0;
unsigned char blank_g = 0;
unsigned char blank_b = 0;
if (HasMask())
{
blank_r = GetMaskRed();
blank_g = GetMaskGreen();
blank_b = GetMaskBlue();
rotated.SetMaskColour( blank_r, blank_g, blank_b );
}
// Now, for each point of the rotated image, find where it came from, by
// performing an inverse rotation (a rotation of -angle) and getting the
// pixel at those coordinates
// GRG: I've taken the (interpolating) test out of the loops, so that
// it is done only once, instead of repeating it for each pixel.
int x;
if (interpolating)
{
for (int y = 0; y < rotated.GetHeight(); y++)
{
for (x = 0; x < rotated.GetWidth(); x++)
{
wxRealPoint src = rotated_point (x + x1, y + y1, cos_angle, -sin_angle, p0);
if (-0.25 < src.x && src.x < GetWidth() - 0.75 &&
-0.25 < src.y && src.y < GetHeight() - 0.75)
{
// interpolate using the 4 enclosing grid-points. Those
// points can be obtained using floor and ceiling of the
// exact coordinates of the point
// C.M. 2000-02-17: when the point is near the border, special care is required.
int x1, y1, x2, y2;
if (0 < src.x && src.x < GetWidth() - 1)
{
x1 = wxCint(floor(src.x));
x2 = wxCint(ceil(src.x));
}
else // else means that x is near one of the borders (0 or width-1)
{
x1 = x2 = wxCint (src.x);
}
if (0 < src.y && src.y < GetHeight() - 1)
{
y1 = wxCint(floor(src.y));
y2 = wxCint(ceil(src.y));
}
else
{
y1 = y2 = wxCint (src.y);
}
// get four points and the distances (square of the distance,
// for efficiency reasons) for the interpolation formula
// GRG: Do not calculate the points until they are
// really needed -- this way we can calculate
// just one, instead of four, if d1, d2, d3
// or d4 are < gs_Epsilon
const double d1 = (src.x - x1) * (src.x - x1) + (src.y - y1) * (src.y - y1);
const double d2 = (src.x - x2) * (src.x - x2) + (src.y - y1) * (src.y - y1);
const double d3 = (src.x - x2) * (src.x - x2) + (src.y - y2) * (src.y - y2);
const double d4 = (src.x - x1) * (src.x - x1) + (src.y - y2) * (src.y - y2);
// Now interpolate as a weighted average of the four surrounding
// points, where the weights are the distances to each of those points
// If the point is exactly at one point of the grid of the source
// image, then don't interpolate -- just assign the pixel
if (d1 < gs_Epsilon) // d1,d2,d3,d4 are positive -- no need for abs()
{
unsigned char *p = data[y1] + (3 * x1);
*(dst++) = *(p++);
*(dst++) = *(p++);
*(dst++) = *p;
if (has_alpha)
{
unsigned char *p = alpha[y1] + x1;
*(alpha_dst++) = *p;
}
}
else if (d2 < gs_Epsilon)
{
unsigned char *p = data[y1] + (3 * x2);
*(dst++) = *(p++);
*(dst++) = *(p++);
*(dst++) = *p;
if (has_alpha)
{
unsigned char *p = alpha[y1] + x2;
*(alpha_dst++) = *p;
}
}
else if (d3 < gs_Epsilon)
{
unsigned char *p = data[y2] + (3 * x2);
*(dst++) = *(p++);
*(dst++) = *(p++);
*(dst++) = *p;
if (has_alpha)
{
unsigned char *p = alpha[y2] + x2;
*(alpha_dst++) = *p;
}
}
else if (d4 < gs_Epsilon)
{
unsigned char *p = data[y2] + (3 * x1);
*(dst++) = *(p++);
*(dst++) = *(p++);
*(dst++) = *p;
if (h
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -