⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ga.c

📁 遗传算法实现最优值的选取
💻 C
字号:
#include<stdio.h>
#include<stdlib.h>
#include<math.h>

/*change any of these parameters to match your needs*/

#define POPSIZE 50                 /*population size*/
#define MAXGENS 1000               /*max.number of generations*/
#define NVARS 3                    /*no.of problem variables*/
#define PXOVER 0.8                 /*probability of crossover*/
#define PMUTATION 0.15             /*probability of mutation*/
#define TRUE 1
#define FALSE 0

int generation;                       /*current generation no.*/
int cur_best;                         /*best individual*/
FILE *galog;                          /*an output file*/
struct genotype                       /*genotype(GT),a member of the population*/
{
  double gene[NVARS];                 /*a string of variables*/
  double fitness;                     /*GT's fitness*/
  double upper[NVARS];                 /*GT's variables upper bound*/
  double lower[NVARS];                /*GT's variables lower bound*/
  double rfitness;                    /*relative fitness*/
  double cfitness;                    /* cumulative fitness */
};
struct genotype population[POPSIZE+ 1];     /* population      */
struct genotype newpopulation[POPSIZE+ 1];	/* new population  */
                                            /* replaces the    */
                                            /* old generation  */

/* Declaration of procedures used by this genetic algorIthm */

void initialize(void); 
double randval(double, double); 
void evaluate(void); 
void keep_the_best(void); 
void elitist(void);
void select(void); 
void crossover(void);
void Xover(int,int);
void swap(double* ,double* ); 
void mutate(void);
void report(void);
/*************************************************************/
/* Initialization function: Initializes the values of ge     */
/* within the variables bounds, It also initializes (to zero)*/	
/* all fitness values for each member of the population, It  */	
/* reads upper and lower bounds of each variable from the    */
/* input file 'gadata.txt'. It randomly generates values     */
/*between these bounds for each gene of each genotype In the */	
/* population. The format of the input file 'gadata.txt 'is  */	
/* var1_lower bound var1_upper bound                         */	
/* var2 lower bound var2.upper bound                         */	
/*************************************************************/	
 void initialize(void)
{
FILE *infile;
int i,j;
double lbound, ubound;

if ((infile = fopen("gadata14.txt", "r")) ==NULL)

{
fprintf(galog, "\nCannot open input file!\n");
exit(1);
}

/* initialize variables within the bounds */


for (i = 0; i< NVARS; i++)
{
   fscanf(infile, "%lf",&lbound);
   fscanf(infile, "%lf",&ubound);

   for( j = 0; j < POPSIZE; j++)
         {
          population[j].fitness = 0; 
          population[j].rfitness = 0;
          population[j].cfitness = 0; 
          population[j].lower[i] =lbound; 
          population[j].upper[i] =ubound;
          population[j].gene[i] = randval(population[j].lower[i], population[j].upper[i]);

         }
}
    fclose(infile);

}
/**********************************************************************/
/* Random value generator: Generates a value within bounds            */
/**********************************************************************/

double randval(double low, double high)
{
    double val;
    val = ((double)(rand()%1000)/1000.0)*(high -low) + low; 
    return(val);
}

/********************************************************************/
/* Evaluation function: This takes a user defined function.         */
/* Each time this is changed, the code has to be recompiled.        */ 
/*The current function is: x[l]^2-x[1]*x[2]+x[3]                    */
/********************************************************************/                                                                                   
void evaluate(void)
{
   int mem;
   int i;
   double x[NVARS+ 1];

   for (mem = 0; mem < POPSIZE; mem++)
   {
        for (i = 0; i < NVARS; i++)
        x[i+1] = population[mem].gene[i];

         population[mem].fitness = (x[1]*x[1] )- (x[1]*x[2]) + x[3];
   }

}
/*********************************************************************/ 
/*Keep the best function: This function keeps track of the           */
/* best member of the population. Note that the last entry in        */
/* the array Population holds a copy of the best individual          */
/*********************************************************************/
void keep_the_best()
{
int mem; 
int i;
cur_best = 0;               /* stores the index of the best individual */

for(mem = 0; mem < POPSIZE; mem++)
{
     if (population[mem].fitness > population[POPSIZE].fitness) 
     {
          cur_best = mem;
          population[POPSIZE].fitness = population[mem].fitness;
	 }
}
/* once the best member in the population is found, copy the genes */
for(i = 0; i<NVARS; i++)
    population[POPSIZE].gene[i] = population[cur_best].gene[i];
}

void elitist()
{
     int i;
     double best,worst;                 /*best and worst fitness values*/
     int best_mem,worst_mem;           /*indexes of the best and worst member*/

     best=population[0].fitness;
     worst=population[0].fitness;
     for(i=0;i<POPSIZE-1;++i)
	 {
	    if(population[i].fitness>population[i+1].fitness)
		{
            if(population[i].fitness>=best)
			{
             best=population[i].fitness;
             best_mem=i;
			}
            if(population[i].fitness<=worst)
			{
             worst=population[i+1].fitness;
             worst_mem=i+1;
			}
		}
        else
  {
    if(population[i].fitness<=worst)
        {
        worst=population[i].fitness;
        worst_mem=i;
        }
    if(population[i+1].fitness>=best)
        {
        best=population[i+1].fitness;
        best_mem=i+1;
        }
    }
}
/* if best individual from the new population is better than */
/* the best induvidual from the previous population, then    */
/* copy the best from the new population;else replace the    */
/* worst individual from the current population with the     */
/* best one from the previous generation                     */
  if(best>=population[POPSIZE].fitness)
  {
     for(i=0;i<NVARS;i++)
      population[POPSIZE].gene[i];
      population[POPSIZE].fitness= population[best_mem].fitness;
  }
  else
  {
      for(i=0;i<NVARS;i++)
      population[worst_mem].gene[i] = population[POPSIZE].gene[i]; 
      population[worst_mem].fitness = population[POPSIZE].fitness;
  } 
}
/* Selection tunction: Standard proportional selection for  */
/* maximization problems incorporating elitist model - makes*/
/* sure that the best member survives                       */
	
  void select(void)
  {
   int mem,i, j, k;
   double sum = 0;
   double p;

    /* find total fitness of the population*/
      for (mem = 0; mem < POPSIZE; mem++)
	  {
       sum+= population[mem].fitness;
      }
   /* calculate relative fitness */
      for (mem = 0; mem <POPSIZE; mem++)
	  {
       population[mem].rfitness = population[mem].fitness/sum;
	  }
       population[0].cfitness = population[0].rfitness;

   /* calculate cumulative titness */
      for (mem = 1; mem <POPSIZE; mem++)
	  {
       population[mem].cfitness = population[mem-1].cfitness +
                            population[mem]. rfitness;
	  }

   /* finally select survivors using cumulative fItness. */

      for (i = 0; i <POPSIZE; i++)
	  {
           p = rand()%1000/1000.0;
           if (p < population[0].cfitness)
                  newpopulation[i] = population[0];
           else
		   {
              for (j = 0; j < POPSIZE;j++)
                    if (p >= population[j].cfitness &&
                              p<population[j+1].cfitness)
                        newpopulation[i] = population[j+1];
		   }
	  }
    /* once a new population is created, copy It back */


    for (i= 0; i< POPSIZE; i++)
     population[i] = newpopulation[i];
}

/* Crossover selection: selects two parents that take part in*/
/* the crossover. Implements a single point crossover*/

 void crossover(void)
{
int i, mem, one;
int first=0;             /* count of the number of members chosen */ 
double x;
for (mem = 0; mem < POPSIZE; ++mem)
     {
          x= rand()%1000/1000.0;
          if (x< PXOVER)
		  {
            ++first;
            if(first%2==0)
            Xover(one, mem);
            else
            one = mem;
		  }
}
}
		
/* Crossover: performs crossover ot the two selected parents.*/
void Xover(int one, int two)
{
int i;
int point;            /* crossover point */

/* select crossover point */ 
if (NVARS >1)
{
if(NVARS == 2)
point= 1;
else
point = (rand() % (NVARS -1)) + 1;
for (i	= 0; i <point; i++) 
swap(&population[one].gene[i], &population[two].gene[i]);
}
}	
/* Swap: A swap procedure that helps in swapping 2 variables*/	
void swap(double*x, double *y)
{
double temp;

temp =*x;
x=y;
*y=temp;

}

/* Mutation: Random uniform mutation. A variable selected for*/
/* mutation is replaced by a random value between lower and*/
/* upper bounds of this variable*/
	
void mutate(void)
{
  int i,j;
double lbound, hbound;
double x;

for (i = 0; i < POPSIZE; i++)
for (j = 0; j<NVARS; j++)
   {
x=rand()%1000/1000.0;
if (x< PMUTATION)
              {
                /*find the bounds on the variable to be mutated */
                lbound = population[i].lower[j];
                hbound = population[i].upper[j];
                population[i].gene[j] = randval(lbound, hbound);

} 
}
}
                                                                           
/* Report   function: Reports progress of the simulation. Data */
/* dumped into the output file are separated by commas*/
void report(void)
{
int i;
double best_val;	            /* best population fitness*/
double avg;	                    /* avg population fitness */
double stddev;	                /* std. deviation of population fitness*/
double sum_square;            	/* sum of square for std. calc */
double square_sum;           	/* square of sum for aId. calc */
double sum;                 	/* total population fitness */

sum = 0.0;
sum_square = 0.0;

for (i = 0; i <POPSIZE; i++)
{
sum+= population[i].fitness; 
sum_square += population[i].fitness* population[i].fitness;
}

avg = sum/(double)POPSIZE; 
square_sum = avg*avg*(double)POPSIZE;
stddev = sqrt((sum_square-square_sum)/(POPSIZE- 1)); 
best_val = population[POPSIZE].fitness;
fprintf(galog, "\n%5d,	%6.3f, %6.3f, %6.3f \n\n", generation,
	best_val, avg, stddev);
}


/*Main function: Each generation involves selecting the best */
/* members, performing crossover & mutation and then         */
/* evaluating the resulting population, until the terminating*/
/* condition is satisfied*/
 
void main(void)
{
int i;
if ((galog = fopen("galog.txt","w"))==NULL)

{
      exit(1);
}
generation = 0;

 fprintf(galog,"\n generation best average standard \n");
 fprintf(galog," number       value fitness deviation \n");

 initialize();
 evaluate();
 keep_the_best();
 while(generation<MAXGENS)
     {
        generation++;
        select();
        crossover();
        mutate();
        report();
        evaluate();
        elitist();
 }
fprintf(galog,"\n\n Simulation completed\n");
fprintf(galog,"\n Best member: \n");

for (i = 0; i< NVARS; i++)
{
fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);
   }
fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness);
 fclose(galog);
printf("Success\n");
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -