📄 ga.c
字号:
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
/*change any of these parameters to match your needs*/
#define POPSIZE 50 /*population size*/
#define MAXGENS 1000 /*max.number of generations*/
#define NVARS 3 /*no.of problem variables*/
#define PXOVER 0.8 /*probability of crossover*/
#define PMUTATION 0.15 /*probability of mutation*/
#define TRUE 1
#define FALSE 0
int generation; /*current generation no.*/
int cur_best; /*best individual*/
FILE *galog; /*an output file*/
struct genotype /*genotype(GT),a member of the population*/
{
double gene[NVARS]; /*a string of variables*/
double fitness; /*GT's fitness*/
double upper[NVARS]; /*GT's variables upper bound*/
double lower[NVARS]; /*GT's variables lower bound*/
double rfitness; /*relative fitness*/
double cfitness; /* cumulative fitness */
};
struct genotype population[POPSIZE+ 1]; /* population */
struct genotype newpopulation[POPSIZE+ 1]; /* new population */
/* replaces the */
/* old generation */
/* Declaration of procedures used by this genetic algorIthm */
void initialize(void);
double randval(double, double);
void evaluate(void);
void keep_the_best(void);
void elitist(void);
void select(void);
void crossover(void);
void Xover(int,int);
void swap(double* ,double* );
void mutate(void);
void report(void);
/*************************************************************/
/* Initialization function: Initializes the values of ge */
/* within the variables bounds, It also initializes (to zero)*/
/* all fitness values for each member of the population, It */
/* reads upper and lower bounds of each variable from the */
/* input file 'gadata.txt'. It randomly generates values */
/*between these bounds for each gene of each genotype In the */
/* population. The format of the input file 'gadata.txt 'is */
/* var1_lower bound var1_upper bound */
/* var2 lower bound var2.upper bound */
/*************************************************************/
void initialize(void)
{
FILE *infile;
int i,j;
double lbound, ubound;
if ((infile = fopen("gadata14.txt", "r")) ==NULL)
{
fprintf(galog, "\nCannot open input file!\n");
exit(1);
}
/* initialize variables within the bounds */
for (i = 0; i< NVARS; i++)
{
fscanf(infile, "%lf",&lbound);
fscanf(infile, "%lf",&ubound);
for( j = 0; j < POPSIZE; j++)
{
population[j].fitness = 0;
population[j].rfitness = 0;
population[j].cfitness = 0;
population[j].lower[i] =lbound;
population[j].upper[i] =ubound;
population[j].gene[i] = randval(population[j].lower[i], population[j].upper[i]);
}
}
fclose(infile);
}
/**********************************************************************/
/* Random value generator: Generates a value within bounds */
/**********************************************************************/
double randval(double low, double high)
{
double val;
val = ((double)(rand()%1000)/1000.0)*(high -low) + low;
return(val);
}
/********************************************************************/
/* Evaluation function: This takes a user defined function. */
/* Each time this is changed, the code has to be recompiled. */
/*The current function is: x[l]^2-x[1]*x[2]+x[3] */
/********************************************************************/
void evaluate(void)
{
int mem;
int i;
double x[NVARS+ 1];
for (mem = 0; mem < POPSIZE; mem++)
{
for (i = 0; i < NVARS; i++)
x[i+1] = population[mem].gene[i];
population[mem].fitness = (x[1]*x[1] )- (x[1]*x[2]) + x[3];
}
}
/*********************************************************************/
/*Keep the best function: This function keeps track of the */
/* best member of the population. Note that the last entry in */
/* the array Population holds a copy of the best individual */
/*********************************************************************/
void keep_the_best()
{
int mem;
int i;
cur_best = 0; /* stores the index of the best individual */
for(mem = 0; mem < POPSIZE; mem++)
{
if (population[mem].fitness > population[POPSIZE].fitness)
{
cur_best = mem;
population[POPSIZE].fitness = population[mem].fitness;
}
}
/* once the best member in the population is found, copy the genes */
for(i = 0; i<NVARS; i++)
population[POPSIZE].gene[i] = population[cur_best].gene[i];
}
void elitist()
{
int i;
double best,worst; /*best and worst fitness values*/
int best_mem,worst_mem; /*indexes of the best and worst member*/
best=population[0].fitness;
worst=population[0].fitness;
for(i=0;i<POPSIZE-1;++i)
{
if(population[i].fitness>population[i+1].fitness)
{
if(population[i].fitness>=best)
{
best=population[i].fitness;
best_mem=i;
}
if(population[i].fitness<=worst)
{
worst=population[i+1].fitness;
worst_mem=i+1;
}
}
else
{
if(population[i].fitness<=worst)
{
worst=population[i].fitness;
worst_mem=i;
}
if(population[i+1].fitness>=best)
{
best=population[i+1].fitness;
best_mem=i+1;
}
}
}
/* if best individual from the new population is better than */
/* the best induvidual from the previous population, then */
/* copy the best from the new population;else replace the */
/* worst individual from the current population with the */
/* best one from the previous generation */
if(best>=population[POPSIZE].fitness)
{
for(i=0;i<NVARS;i++)
population[POPSIZE].gene[i];
population[POPSIZE].fitness= population[best_mem].fitness;
}
else
{
for(i=0;i<NVARS;i++)
population[worst_mem].gene[i] = population[POPSIZE].gene[i];
population[worst_mem].fitness = population[POPSIZE].fitness;
}
}
/* Selection tunction: Standard proportional selection for */
/* maximization problems incorporating elitist model - makes*/
/* sure that the best member survives */
void select(void)
{
int mem,i, j, k;
double sum = 0;
double p;
/* find total fitness of the population*/
for (mem = 0; mem < POPSIZE; mem++)
{
sum+= population[mem].fitness;
}
/* calculate relative fitness */
for (mem = 0; mem <POPSIZE; mem++)
{
population[mem].rfitness = population[mem].fitness/sum;
}
population[0].cfitness = population[0].rfitness;
/* calculate cumulative titness */
for (mem = 1; mem <POPSIZE; mem++)
{
population[mem].cfitness = population[mem-1].cfitness +
population[mem]. rfitness;
}
/* finally select survivors using cumulative fItness. */
for (i = 0; i <POPSIZE; i++)
{
p = rand()%1000/1000.0;
if (p < population[0].cfitness)
newpopulation[i] = population[0];
else
{
for (j = 0; j < POPSIZE;j++)
if (p >= population[j].cfitness &&
p<population[j+1].cfitness)
newpopulation[i] = population[j+1];
}
}
/* once a new population is created, copy It back */
for (i= 0; i< POPSIZE; i++)
population[i] = newpopulation[i];
}
/* Crossover selection: selects two parents that take part in*/
/* the crossover. Implements a single point crossover*/
void crossover(void)
{
int i, mem, one;
int first=0; /* count of the number of members chosen */
double x;
for (mem = 0; mem < POPSIZE; ++mem)
{
x= rand()%1000/1000.0;
if (x< PXOVER)
{
++first;
if(first%2==0)
Xover(one, mem);
else
one = mem;
}
}
}
/* Crossover: performs crossover ot the two selected parents.*/
void Xover(int one, int two)
{
int i;
int point; /* crossover point */
/* select crossover point */
if (NVARS >1)
{
if(NVARS == 2)
point= 1;
else
point = (rand() % (NVARS -1)) + 1;
for (i = 0; i <point; i++)
swap(&population[one].gene[i], &population[two].gene[i]);
}
}
/* Swap: A swap procedure that helps in swapping 2 variables*/
void swap(double*x, double *y)
{
double temp;
temp =*x;
x=y;
*y=temp;
}
/* Mutation: Random uniform mutation. A variable selected for*/
/* mutation is replaced by a random value between lower and*/
/* upper bounds of this variable*/
void mutate(void)
{
int i,j;
double lbound, hbound;
double x;
for (i = 0; i < POPSIZE; i++)
for (j = 0; j<NVARS; j++)
{
x=rand()%1000/1000.0;
if (x< PMUTATION)
{
/*find the bounds on the variable to be mutated */
lbound = population[i].lower[j];
hbound = population[i].upper[j];
population[i].gene[j] = randval(lbound, hbound);
}
}
}
/* Report function: Reports progress of the simulation. Data */
/* dumped into the output file are separated by commas*/
void report(void)
{
int i;
double best_val; /* best population fitness*/
double avg; /* avg population fitness */
double stddev; /* std. deviation of population fitness*/
double sum_square; /* sum of square for std. calc */
double square_sum; /* square of sum for aId. calc */
double sum; /* total population fitness */
sum = 0.0;
sum_square = 0.0;
for (i = 0; i <POPSIZE; i++)
{
sum+= population[i].fitness;
sum_square += population[i].fitness* population[i].fitness;
}
avg = sum/(double)POPSIZE;
square_sum = avg*avg*(double)POPSIZE;
stddev = sqrt((sum_square-square_sum)/(POPSIZE- 1));
best_val = population[POPSIZE].fitness;
fprintf(galog, "\n%5d, %6.3f, %6.3f, %6.3f \n\n", generation,
best_val, avg, stddev);
}
/*Main function: Each generation involves selecting the best */
/* members, performing crossover & mutation and then */
/* evaluating the resulting population, until the terminating*/
/* condition is satisfied*/
void main(void)
{
int i;
if ((galog = fopen("galog.txt","w"))==NULL)
{
exit(1);
}
generation = 0;
fprintf(galog,"\n generation best average standard \n");
fprintf(galog," number value fitness deviation \n");
initialize();
evaluate();
keep_the_best();
while(generation<MAXGENS)
{
generation++;
select();
crossover();
mutate();
report();
evaluate();
elitist();
}
fprintf(galog,"\n\n Simulation completed\n");
fprintf(galog,"\n Best member: \n");
for (i = 0; i< NVARS; i++)
{
fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);
}
fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness);
fclose(galog);
printf("Success\n");
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -