📄 ar5210_reset.c
字号:
/* Wait for AGC changes to be enacted */ OS_DELAY(20); /* * We disable RF mix/gain stages for the PGA to avoid a * race condition that will occur with receiving a frame * and performing the AGC calibration. This will be * re-enabled at the end of offset cal. We turn off AGC * writes during this write as it will go over the analog bus. */ OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000); OS_DELAY(10); /* wait for the AGC traffic to cease */ OS_REG_WRITE(ah, 0x98D4, 0x21); OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000)); /* wait to make sure that additional AGC traffic has quiesced */ OS_DELAY(1000); /* AGC calibration (this was added to make the NF threshold check work) */ OS_REG_WRITE(ah, AR_PHY_AGCCTL, OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL); if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) HALDEBUG(ah, "%s: AGC calibration timeout\n", __func__); /* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */ OS_REG_WRITE(ah, 0x9858, reg9858); OS_REG_WRITE(ah, 0x985c, reg985c); OS_REG_WRITE(ah, 0x9868, reg9868); /* Perform noise floor and set status */ if (!ar5210CalNoiseFloor(ah, chan)) { /* * Delay 5ms before retrying the noise floor - * just to make sure. We're in an error * condition here */ HALDEBUG(ah, "%s: Performing 2nd Noise Cal\n", __func__); OS_DELAY(5000); if (!ar5210CalNoiseFloor(ah, chan)) chan->channelFlags |= CHANNEL_CW_INT; } /* Clear tx and rx disable bit */ OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX)); /* Re-enable Beacons */ OS_REG_WRITE(ah, AR_BEACON, regBeacon); *isIQdone = AH_TRUE; return AH_TRUE;}/* * Writes the given reset bit mask into the reset register */static HAL_BOOLar5210SetResetReg(struct ath_hal *ah, u_int32_t resetMask, u_int delay){ u_int32_t mask = resetMask ? resetMask : ~0; HAL_BOOL rt; OS_REG_WRITE(ah, AR_RC, resetMask); /* need to wait at least 128 clocks when reseting PCI before read */ OS_DELAY(delay); resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC; mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC; rt = ath_hal_wait(ah, AR_RC, mask, resetMask); if ((resetMask & AR_RC_RMAC) == 0) { if (isBigEndian()) { /* * Set CFG, little-endian for register * and descriptor accesses. */ mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG; OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask)); } else OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); } return rt;}/* * Returns: the pcdac value */static u_int8_tgetPcdac(struct ath_hal *ah, struct tpcMap *pRD, u_int8_t dBm){ int32_t i; int useNextEntry = AH_FALSE; u_int32_t interp; for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) { /* Check for exact entry */ if (dBm == AR_I2DBM(i)) { if (pRD->pcdac[i] != 63) return pRD->pcdac[i]; useNextEntry = AH_TRUE; } else if (dBm + 1 == AR_I2DBM(i) && i > 0) { /* Interpolate for between entry with a logish scale */ if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) { interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999; interp = (interp / 1000) + pRD->pcdac[i-1]; return interp; } useNextEntry = AH_TRUE; } else if (useNextEntry == AH_TRUE) { /* Grab the next lowest */ if (pRD->pcdac[i] != 63) return pRD->pcdac[i]; } } /* Return the lowest Entry if we haven't returned */ for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) if (pRD->pcdac[i] != 63) return pRD->pcdac[i]; /* No value to return from table */#ifdef AH_DEBUG ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__);#endif return 1;}/* * Find or interpolates the gainF value from the table ptr. */static u_int8_tgetGainF(struct ath_hal *ah, struct tpcMap *pRD, u_int8_t pcdac, u_int8_t *dBm){ u_int32_t interp; int low, high, i; low = high = -1; for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) { if(pRD->pcdac[i] == 63) continue; if (pcdac == pRD->pcdac[i]) { *dBm = AR_I2DBM(i); return pRD->gainF[i]; /* Exact Match */ } if (pcdac > pRD->pcdac[i]) low = i; if (pcdac < pRD->pcdac[i]) { high = i; if (low == -1) { *dBm = AR_I2DBM(i); /* PCDAC is lower than lowest setting */ return pRD->gainF[i]; } break; } } if (i >= AR_TP_SCALING_ENTRIES && low == -1) { /* No settings were found */#ifdef AH_DEBUG ath_hal_printf(ah, "%s: no valid entries in the pcdac table: %d\n", __func__, pcdac);#endif return 63; } if (i >= AR_TP_SCALING_ENTRIES) { /* PCDAC setting was above the max setting in the table */ *dBm = AR_I2DBM(low); return pRD->gainF[low]; } /* Only exact if table has no missing entries */ *dBm = (low + high) + 3; /* * Perform interpolation between low and high values to find gainF * linearly scale the pcdac between low and high */ interp = ((pcdac - pRD->pcdac[low]) * 1000) / (pRD->pcdac[high] - pRD->pcdac[low]); /* * Multiply the scale ratio by the gainF difference * (plus a rnd up factor) */ interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000; /* Add ratioed gain_f to low gain_f value */ return interp + pRD->gainF[low];}HAL_BOOLar5210SetTxPowerLimit(struct ath_hal *ah, u_int32_t limit){ AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER); /* XXX flush to h/w */ return AH_TRUE;}/* * Get TXPower values and set them in the radio */static HAL_BOOLsetupPowerSettings(struct ath_hal *ah, HAL_CHANNEL *chan, u_int8_t cp[17]){ struct ath_hal_5210 *ahp = AH5210(ah); u_int8_t gainFRD, gainF36, gainF48, gainF54; u_int8_t dBmRD, dBm36, dBm48, dBm54, dontcare; u_int32_t rd, group; struct tpcMap *pRD; /* Set OB/DB Values regardless of channel */ cp[15] = (ahp->ah_biasCurrents >> 4) & 0x7; cp[16] = ahp->ah_biasCurrents & 0x7; if (chan->channel < 5170 || chan->channel > 5320) { HALDEBUG(ah, "%s: invalid channel %u\n", __func__, chan->channel); return AH_FALSE; } HALASSERT(ahp->ah_eeversion == 1); /* Match regulatory domain */ for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++) if (AH_PRIVATE(ah)->ah_currentRD == ahp->ah_regDomain[rd]) break; if (rd == AR_REG_DOMAINS_MAX) {#ifdef AH_DEBUG ath_hal_printf(ah, "%s: no calibrated regulatory domain matches the " "current regularly domain (0x%0x)\n", __func__, rd);#endif return AH_FALSE; } group = ((chan->channel - 5170) / 10); if (group > 11) { /* Pull 5.29 into the 5.27 group */ group--; } /* Integer divide will set group from 0 to 4 */ group = group / 3; pRD = &ahp->ah_tpc[group]; /* Set PC DAC Values */ cp[14] = pRD->regdmn[rd]; cp[9] = AH_MIN(pRD->regdmn[rd], pRD->rate36); cp[8] = AH_MIN(pRD->regdmn[rd], pRD->rate48); cp[7] = AH_MIN(pRD->regdmn[rd], pRD->rate54); /* Find Corresponding gainF values for RD, 36, 48, 54 */ gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD); gainF36 = getGainF(ah, pRD, cp[9], &dBm36); gainF48 = getGainF(ah, pRD, cp[8], &dBm48); gainF54 = getGainF(ah, pRD, cp[7], &dBm54); /* Power Scale if requested */ if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) { static const u_int16_t tpcScaleReductionTable[5] = { 0, 3, 6, 9, MAX_RATE_POWER }; u_int16_t tpScale; tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale]; if (dBmRD < tpScale+3) dBmRD = 3; /* min */ else dBmRD -= tpScale; cp[14] = getPcdac(ah, pRD, dBmRD); gainFRD = getGainF(ah, pRD, cp[14], &dontcare); dBm36 = AH_MIN(dBm36, dBmRD); cp[9] = getPcdac(ah, pRD, dBm36); gainF36 = getGainF(ah, pRD, cp[9], &dontcare); dBm48 = AH_MIN(dBm48, dBmRD); cp[8] = getPcdac(ah, pRD, dBm48); gainF48 = getGainF(ah, pRD, cp[8], &dontcare); dBm54 = AH_MIN(dBm54, dBmRD); cp[7] = getPcdac(ah, pRD, dBm54); gainF54 = getGainF(ah, pRD, cp[7], &dontcare); } /* Record current dBm at rate 6 */ AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD; cp[13] = cp[12] = cp[11] = cp[10] = cp[14]; /* Set GainF Values */ cp[0] = gainFRD - gainF54; cp[1] = gainFRD - gainF48; cp[2] = gainFRD - gainF36; /* 9, 12, 18, 24 have no gain_delta from 6 */ cp[3] = cp[4] = cp[5] = cp[6] = 0; return AH_TRUE;}/* * Places the device in and out of reset and then places sane * values in the registers based on EEPROM config, initialization * vectors (as determined by the mode), and station configuration */HAL_BOOLar5210SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL *chan){#define N(a) (sizeof (a) / sizeof (a[0])) static const u_int32_t pwr_regs_start[17] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xf0000000, 0xcc000000, 0x00000000, 0x00000000, 0x00000000, 0x0a000000, 0x000000e2, 0x0a000020, 0x01000002, 0x01000018, 0x40000000, 0x00000418 }; u_int16_t i; u_int8_t cp[sizeof(ar5k0007_pwrSettings)]; u_int32_t pwr_regs[17]; OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs)); OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp)); /* Check the EEPROM tx power calibration settings */ if (!setupPowerSettings(ah, chan, cp)) {#ifdef AH_DEBUG ath_hal_printf(ah, "%s: unable to setup power settings\n", __func__);#endif return AH_FALSE; } if (cp[15] < 1 || cp[15] > 5) {#ifdef AH_DEBUG ath_hal_printf(ah, "%s: OB out of range (%u)\n", __func__, cp[15]);#endif return AH_FALSE; } if (cp[16] < 1 || cp[16] > 5) {#ifdef AH_DEBUG ath_hal_printf(ah, "%s: DB out of range (%u)\n", __func__, cp[16]);#endif return AH_FALSE; } /* reverse bits of the transmit power array */ for (i = 0; i < 7; i++) cp[i] = ath_hal_reverseBits(cp[i], 5); for (i = 7; i < 15; i++) cp[i] = ath_hal_reverseBits(cp[i], 6); /* merge transmit power values into the register - quite gross */ pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F); pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) | ((cp[1] >> 3) & 0x03); pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F); pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) | ((cp[4] >> 4) & 0x01); pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07); pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) | ((cp[7] >> 5) & 0x01); pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F); pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07); pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01); pwr_regs[9] |= ((cp[13] << 5) & 0xE0); pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07); pwr_regs[11] |= ((cp[14] >> 5) & 0x01); /* Set OB */ pwr_regs[8] |= (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80; pwr_regs[9] |= (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03; /* Set DB */ pwr_regs[9] |= (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C; /* Write the registers */ for (i = 0; i < N(pwr_regs)-1; i++) OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]); /* last write is a flush */ OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]); return AH_TRUE;#undef N}/* * Takes the MHz channel value and sets the Channel value * * ASSUMES: Writes enabled to analog bus before AGC is active * or by disabling the AGC. */static HAL_BOOLar5210SetChannel(struct ath_hal *ah, HAL_CHANNEL *chan){ HAL_CHANNEL_INTERNAL *ichan; u_int32_t data; ichan = ath_hal_checkchannel(ah, chan); if (ichan == AH_NULL) { HALDEBUG(ah, "%s: invalid channel %u MHz flags 0x%x\n", __func__, chan->channel, chan->channelFlags); return AH_FALSE; } /* Set the Channel */ data = ath_hal_reverseBits((chan->channel - 5120)/10, 5); data = (data << 1) | 0x41; OS_REG_WRITE(ah, AR_PHY(0x27), data); OS_REG_WRITE(ah, AR_PHY(0x30), 0); AH_PRIVATE(ah)->ah_curchan = ichan; return AH_TRUE;}int16_tar5210GetNoiseFloor(struct ath_hal *ah){ int16_t nf; nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff; if (nf & 0x100) nf = 0 - ((nf ^ 0x1ff) + 1); return nf;}#define NORMAL_NF_THRESH (-72)/* * Peform the noisefloor calibration and check for * any constant channel interference * * Returns: TRUE for a successful noise floor calibration; else FALSE */HAL_BOOLar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL *chan){ int32_t nf, nfLoops; /* Calibrate the noise floor */ OS_REG_WRITE(ah, AR_PHY_AGCCTL, OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF); /* Do not read noise floor until it has done the first update */ if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) {#ifdef ATH_HAL_DEBUG ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n", OS_REG_READ(ah, AR_PHY_AGCCTL)); ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n", OS_REG_READ(ah, AR_RC)); ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n", OS_REG_READ(ah, AR_PHY_ACTIVE));#endif /* ATH_HAL_DEBUG */ return AH_FALSE; } nf = 0; /* Keep checking until the floor is below the threshold or the nf is done */ for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) { OS_DELAY(1000); /* Sleep for 1 ms */ nf = ar5210GetNoiseFloor(ah); } if (nf > NORMAL_NF_THRESH) { HALDEBUG(ah, "%s: Bad noise cal %d\n", __func__, nf); return AH_FALSE; } return AH_TRUE;}HAL_RFGAINar5210GetRfgain(struct ath_hal *ah){ return HAL_RFGAIN_INACTIVE;}#endif /* AH_SUPPORT_AR5210 */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -