📄 lmdif.cpp
字号:
/* minpack-supplied ... dpmpar,enorm,fdjac2,lmpar,qrfac *//* fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod *//* argonne national laboratory. minpack project. march 1980. *//* burton s. garbow, kenneth e. hillstrom, jorge j. more *//* ********** */ /* Parameter adjustments */ --wa4; --wa3; --wa2; --wa1; --qtf; --ipvt; fjac_dim1 = *ldfjac; fjac_offset = fjac_dim1 + 1; fjac -= fjac_offset; --diag; --fvec; --x; /* Function Body *//* epsmch is the machine precision. */ epsmch = ::dpmpar_(&c__1); *info = 0; iflag = 0; *nfev = 0;/* check the input parameters for errors. */ if (*n <= 0 || *m < *n || *ldfjac < *m || *ftol < zero || *xtol < zero || *gtol < zero || *maxfev <= 0 || *factor <= zero) { goto L300; } if (*mode != 2) { goto L20; } i__1 = *n; for (j = 1; j <= i__1; ++j) { if (diag[j] <= zero) { goto L300; }/* L10: */ }L20:/* evaluate the function at the starting point *//* and calculate its norm. */ iflag = 1; (*fcn)(m, n, &x[1], &fvec[1], &iflag); *nfev = 1; if (iflag < 0) { goto L300; } fnorm = ::enorm_(m, &fvec[1]);/* initialize levenberg-marquardt parameter and iteration counter. */ par = zero; iter = 1;/* beginning of the outer loop. */L30:/* calculate the jacobian matrix. */ iflag = 2; ::fdjac2_(fcn, m, n, &x[1], &fvec[1], &fjac[fjac_offset], ldfjac, &iflag, epsfcn, &wa4[1]); *nfev += *n; if (iflag < 0) { goto L300; }/* if requested, call fcn to enable printing of iterates. */ if (*nprint <= 0) { goto L40; } iflag = 0; if ((iter - 1) % *nprint == 0) { (fcn)(m, n, &x[1], &fvec[1], &iflag); } if (iflag < 0) { goto L300; }L40:/* compute the qr factorization of the jacobian. */ ::qrfac_(m, n, &fjac[fjac_offset], ldfjac, &c__1, &ipvt[1], n, &wa1[1], & wa2[1], &wa3[1]);/* on the first iteration and if mode is 1, scale according *//* to the norms of the columns of the initial jacobian. */ if (iter != 1) { goto L80; } if (*mode == 2) { goto L60; } i__1 = *n; for (j = 1; j <= i__1; ++j) { diag[j] = wa2[j]; if (wa2[j] == zero) { diag[j] = one; }/* L50: */ }L60:/* on the first iteration, calculate the norm of the scaled x *//* and initialize the step bound delta. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { wa3[j] = diag[j] * x[j];/* L70: */ } xnorm = ::enorm_(n, &wa3[1]); delta = *factor * xnorm; if (delta == zero) { delta = *factor; }L80:/* form (q transpose)*fvec and store the first n components in *//* qtf. */ i__1 = *m; for (i = 1; i <= i__1; ++i) { wa4[i] = fvec[i];/* L90: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { if (fjac[j + j * fjac_dim1] == zero) { goto L120; } sum = zero; i__2 = *m; for (i = j; i <= i__2; ++i) { sum += fjac[i + j * fjac_dim1] * wa4[i];/* L100: */ } temp = -sum / fjac[j + j * fjac_dim1]; i__2 = *m; for (i = j; i <= i__2; ++i) { wa4[i] += fjac[i + j * fjac_dim1] * temp;/* L110: */ }L120: fjac[j + j * fjac_dim1] = wa1[j]; qtf[j] = wa4[j];/* L130: */ }/* compute the norm of the scaled gradient. */ gnorm = zero; if (fnorm == zero) { goto L170; } i__1 = *n; for (j = 1; j <= i__1; ++j) { l = ipvt[j]; if (wa2[l] == zero) { goto L150; } sum = zero; i__2 = j; for (i = 1; i <= i__2; ++i) { sum += fjac[i + j * fjac_dim1] * (qtf[i] / fnorm);/* L140: */ }/* Computing MAX */ d__2 = gnorm, d__3 = (d__1 = sum / wa2[l], abs(d__1)); gnorm = xmax(d__2,d__3);L150:/* L160: */ ; }L170:/* test for convergence of the gradient norm. */ if (gnorm <= *gtol) { *info = 4; } if (*info != 0) { goto L300; }/* rescale if necessary. */ if (*mode == 2) { goto L190; } i__1 = *n; for (j = 1; j <= i__1; ++j) {/* Computing MAX */ d__1 = diag[j], d__2 = wa2[j]; diag[j] = xmax(d__1,d__2);/* L180: */ }L190:/* beginning of the inner loop. */L200:/* determine the levenberg-marquardt parameter. */ ::lmpar_(n, &fjac[fjac_offset], ldfjac, &ipvt[1], &diag[1], &qtf[1], &delta, &par, &wa1[1], &wa2[1], &wa3[1], &wa4[1]);/* store the direction p and x + p. calculate the norm of p. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { wa1[j] = -wa1[j]; wa2[j] = x[j] + wa1[j]; wa3[j] = diag[j] * wa1[j];/* L210: */ } pnorm = ::enorm_(n, &wa3[1]);/* on the first iteration, adjust the initial step bound. */ if (iter == 1) { delta = xmin(delta,pnorm); }/* evaluate the function at x + p and calculate its norm. */ iflag = 1; (*fcn)(m, n, &wa2[1], &wa4[1], &iflag); ++(*nfev); if (iflag < 0) { goto L300; } fnorm1 = ::enorm_(m, &wa4[1]);/* compute the scaled actual reduction. */ actred = -one; if (p1 * fnorm1 < fnorm) {/* Computing 2nd power */ d__1 = fnorm1 / fnorm; actred = one - d__1 * d__1; }/* compute the scaled predicted reduction and *//* the scaled directional derivative. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { wa3[j] = zero; l = ipvt[j]; temp = wa1[l]; i__2 = j; for (i = 1; i <= i__2; ++i) { wa3[i] += fjac[i + j * fjac_dim1] * temp;/* L220: */ }/* L230: */ } temp1 = ::enorm_(n, &wa3[1]) / fnorm; temp2 = ::sqrt(par) * pnorm / fnorm;/* Computing 2nd power */ d__1 = temp1;/* Computing 2nd power */ d__2 = temp2; prered = d__1 * d__1 + d__2 * d__2 / p5;/* Computing 2nd power */ d__1 = temp1;/* Computing 2nd power */ d__2 = temp2; dirder = -(d__1 * d__1 + d__2 * d__2);/* compute the ratio of the actual to the predicted *//* reduction. */ ratio = zero; if (prered != zero) { ratio = actred / prered; }/* update the step bound. */ if (ratio > p25) { goto L240; } if (actred >= zero) { temp = p5; } if (actred < zero) { temp = p5 * dirder / (dirder + p5 * actred); } if (p1 * fnorm1 >= fnorm || temp < p1) { temp = p1; }/* Computing MIN */ d__1 = delta, d__2 = pnorm / p1; delta = temp * xmin(d__1,d__2); par /= temp; goto L260;L240: if (par != zero && ratio < p75) { goto L250; } delta = pnorm / p5; par = p5 * par;L250:L260:/* test for successful iteration. */ if (ratio < p0001) { goto L290; }/* successful iteration. update x, fvec, and their norms. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { x[j] = wa2[j]; wa2[j] = diag[j] * x[j];/* L270: */ } i__1 = *m; for (i = 1; i <= i__1; ++i) { fvec[i] = wa4[i];/* L280: */ } xnorm = ::enorm_(n, &wa2[1]); fnorm = fnorm1;
++iter;L290:/* tests for convergence. */ if (abs(actred) <= *ftol && prered <= *ftol && p5 * ratio <= one) { *info = 1; } if (delta <= *xtol * xnorm) { *info = 2; } if (abs(actred) <= *ftol && prered <= *ftol && p5 * ratio <= one && *info == 2) { *info = 3; } if (*info != 0) { goto L300; }/* tests for termination and stringent tolerances. */ if (*nfev >= *maxfev) { *info = 5; } if (abs(actred) <= epsmch && prered <= epsmch && p5 * ratio <= one) { *info = 6; } if (delta <= epsmch * xnorm) { *info = 7; } if (gnorm <= epsmch) { *info = 8; } if (*info != 0) { goto L300; }/* end of the inner loop. repeat if iteration unsuccessful. */ if (ratio < p0001) { goto L200; }/* end of the outer loop. */ goto L30;L300:/* termination, either normal or user imposed. */ if (iflag < 0) { *info = iflag; } iflag = 0; if (*nprint > 0) { (*fcn)(m, n, &x[1], &fvec[1], &iflag); } return 0;/* last card of subroutine lmdif. */} /* lmdif_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -