📄 experiment_m_8.c
字号:
//###########################################################################
//
// FILE: experiment_m_8.c
//
// TITLE: DSP28 SCI - Communication to Windows - Hyperterminal
// DSP sends the string "The F2812-UART is fine ! Thankyou !" approx. every 2 seconds
// Setup : 9600 Baud, 8 Bit , No Parity , 1 Stopbit
//
//###########################################################################
#include "DSP281x_Device.h"
// Prototype statements for functions found within this file.
void Gpio_select(void);
//void SpeedUpRevA(void);
void InitSystem(void);
void CfgFlash(void);
void SCI_Init(void);
// Global symbols defined in the linker command file
extern Uint16 RamfuncsLoadStart;
extern Uint16 RamfuncsLoadEnd;
extern Uint16 RamfuncsRunStart;
void main(void)
{
char message[]={"The F2812-UART is fine ! Thankyou !\n\r"};
int index =0; // pointer into string
long i;
InitSystem(); // Initialize the DSP's core Registers
//SpeedUpRevA(); // Speed_up the silicon A Revision.
Gpio_select(); // Setup the GPIO Multiplex Registers
GpioDataRegs.GPBDAT.all = 0xFFFE;
// Copy all FLASH sections that need to run from RAM (use memcpy() from RTS library)
// Section ramfuncs contains user defined code that runs from CSM secured RAM
memcpy( &RamfuncsRunStart,
&RamfuncsLoadStart,
&RamfuncsLoadEnd - &RamfuncsLoadStart);
// Initialize the FLASH
CfgFlash(); // Initialize the FLASH
SCI_Init();
while(1)
{
SciaRegs.SCITXBUF=message[index++];
while ( SciaRegs.SCICTL2.bit.TXEMPTY == 0); //wait for TX -empty
EALLOW;
SysCtrlRegs.WDKEY = 0x55; // Serve watchdog #1
SysCtrlRegs.WDKEY = 0xAA; // Serve watchdog #1
EDIS;
if (index > 36)
{
index =0;
for(i=0;i<15000000;i++) // Software - delay approx. 2 sec.
{
EALLOW;
SysCtrlRegs.WDKEY = 0x55; // Serve watchdog #1
SysCtrlRegs.WDKEY = 0xAA; // Serve watchdog #1
EDIS;
}
}
}
}
void Gpio_select(void)
{
EALLOW;
GpioMuxRegs.GPAMUX.all = 0x0; // all GPIO port Pin's to I/O
GpioMuxRegs.GPBMUX.all = 0x0;
GpioMuxRegs.GPDMUX.all = 0x0;
GpioMuxRegs.GPFMUX.all = 0x0;
GpioMuxRegs.GPFMUX.bit.SCIRXDA_GPIOF5 = 1; //SCI-RX
GpioMuxRegs.GPFMUX.bit.SCITXDA_GPIOF4 = 1; //SCI-TX
GpioMuxRegs.GPEMUX.all = 0x0;
GpioMuxRegs.GPGMUX.all = 0x0;
GpioMuxRegs.GPADIR.all = 0x0; // GPIO PORT as input
GpioMuxRegs.GPBDIR.all = 0x00FF;// GPIO Port B15-B8 input , B7-B0 output
GpioMuxRegs.GPDDIR.all = 0x0; // GPIO PORT as input
GpioMuxRegs.GPEDIR.all = 0x0; // GPIO PORT as input
GpioMuxRegs.GPFDIR.all = 0x0; // GPIO PORT as input
GpioMuxRegs.GPGDIR.all = 0x0; // GPIO PORT as input
GpioMuxRegs.GPAQUAL.all = 0x0; // Set GPIO input qualifier values to zero
GpioMuxRegs.GPBQUAL.all = 0x0;
GpioMuxRegs.GPDQUAL.all = 0x0;
GpioMuxRegs.GPEQUAL.all = 0x0;
EDIS;
}
/*
void SpeedUpRevA(void)
{
// On TMX samples, to get the best performance of on chip RAM blocks M0/M1/L0/L1/H0 internal
// control registers bit have to be enabled. The bits are in Device emulation registers.
EALLOW;
DevEmuRegs.M0RAMDFT = 0x0300;
DevEmuRegs.M1RAMDFT = 0x0300;
DevEmuRegs.L0RAMDFT = 0x0300;
DevEmuRegs.L1RAMDFT = 0x0300;
DevEmuRegs.H0RAMDFT = 0x0300;
EDIS;
}
*/
void InitSystem(void)
{
volatile int16 dummy; // General purpose volatile int16
EALLOW; // Enable EALLOW protected register access
// Memory Protection Configuration
DevEmuRegs.PROTSTART = 0x0100; // Write default value to protection start register
DevEmuRegs.PROTRANGE = 0x00FF; // Write default value to protection range register
// Unlock the Code Security Module if CSM not in use
/* Unlocking the CSM will allow code running from non-secure memory
to access code and data in secure memory. One would only want to
unsecure the CSM if code security were not desired, and therefore
the CSM is not in use (otherwise, unlocking the CSM will compromise
the security of user code). If the CSM is not in use, the best
thing to do is leave the password locations programmed to 0xFFFF,
which is the flash ERASED state. When all passwords are 0xFFFF,
all that is required to unlock the CSM are dummy reads of the
PWL locations.
*/
dummy = CsmPwl.PSWD0; // Dummy read of PWL locations
dummy = CsmPwl.PSWD1; // Dummy read of PWL locations
dummy = CsmPwl.PSWD2; // Dummy read of PWL locations
dummy = CsmPwl.PSWD3; // Dummy read of PWL locations
dummy = CsmPwl.PSWD4; // Dummy read of PWL locations
dummy = CsmPwl.PSWD5; // Dummy read of PWL locations
dummy = CsmPwl.PSWD6; // Dummy read of PWL locations
dummy = CsmPwl.PSWD7; // Dummy read of PWL locations
asm(" RPT #6 || NOP");
SysCtrlRegs.WDCR= 0x00AF; // Setup the watchdog
// 0x00E8 to disable the Watchdog , Prescaler = 1
// 0x00AF to NOT disable the Watchdog, Prescaler = 64
SysCtrlRegs.SCSR = 0; // Watchdog generates a RESET
SysCtrlRegs.PLLCR.bit.DIV = 10; // Setup the Clock PLL to multiply by 5
SysCtrlRegs.HISPCP.all = 0x1; // Setup Highspeed Clock Prescaler to divide by 2
SysCtrlRegs.LOSPCP.all = 0x2; // Setup Lowspeed CLock Prescaler to divide by 4
// Peripheral clock enables set for the selected peripherals.
SysCtrlRegs.PCLKCR.bit.EVAENCLK=0;
SysCtrlRegs.PCLKCR.bit.EVBENCLK=0;
SysCtrlRegs.PCLKCR.bit.SCIAENCLK=1;
SysCtrlRegs.PCLKCR.bit.SCIBENCLK=0;
SysCtrlRegs.PCLKCR.bit.MCBSPENCLK=0;
SysCtrlRegs.PCLKCR.bit.SPIENCLK=0;
SysCtrlRegs.PCLKCR.bit.ECANENCLK=0;
SysCtrlRegs.PCLKCR.bit.ADCENCLK=0;
EDIS;
}
/**********************************************************************
* Function: CfgFlash()
* Description: Initializes the F281x flash timing registers.
* Notes:
* 1) This function MUST be executed out of RAM. Executing it out of
* OTP/FLASH will produce unpredictable results.
* 2) The flash registers are code security module protected. Therefore,
* you must either run this function from L0/L1 RAM, or you must
* first unlock the CSM. Note that unlocking the CSM as part of
* the program flow can compromise the code security.
* 3) The latest datasheet for the particular device of interest should
* be consulted to confirm the flash timing specifications.
**********************************************************************/
#pragma CODE_SECTION(CfgFlash, "ramfuncs")
void CfgFlash(void)
{
asm(" EALLOW"); // Enable EALLOW protected register access
FlashRegs.FPWR.bit.PWR = 3; // Pump and bank set to active mode
FlashRegs.FSTATUS.bit.V3STAT = 1; // Clear the 3VSTAT bit
FlashRegs.FSTDBYWAIT.bit.STDBYWAIT = 0x01FF; // Sleep to standby transition cycles
FlashRegs.FACTIVEWAIT.bit.ACTIVEWAIT = 0x01FF; // Standby to active transition cycles
FlashRegs.FBANKWAIT.bit.RANDWAIT = 5;// Random access waitstates
FlashRegs.FBANKWAIT.bit.PAGEWAIT = 5;// Paged access waitstates
FlashRegs.FOTPWAIT.bit.OTPWAIT = 8; // OTP waitstates
FlashRegs.FOPT.bit.ENPIPE = 1; // Enable the flash pipeline
asm(" EDIS"); // Disable EALLOW protected register access
// Force a complete pipeline flush to ensure that the write to the last register
// configured occurs before returning. Safest thing is to wait 8 full cycles.
asm(" RPT #6 || NOP");
} //end of CfgFlash()
void SCI_Init(void)
{
SciaRegs.SCICCR.all =0x0007; // 1 stop bit, No loopback
// No parity,8 char bits,
// async mode, idle-line protocol
SciaRegs.SCICTL1.all =0x0003; // enable TX, RX, internal SCICLK,
// Disable RX ERR, SLEEP, TXWAKE
SciaRegs.SCIHBAUD = 487 >> 8 ; // 9600 Baud ; LSPCLK = 37.5MHz
SciaRegs.SCILBAUD = 487 & 0x00FF;
SciaRegs.SCICTL1.all =0x0023; // Relinquish SCI from Reset
}
//===========================================================================
// End
//===========================================================================
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -