⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gf2n_8h-source.html

📁 著名的密码库Crypto++的文档 C++语言的杰作。程序员必备。
💻 HTML
📖 第 1 页 / 共 4 页
字号:
<a name="l00079"></a>00079 <span class="comment">                //! encode in big-endian format</span><a name="l00080"></a>00080 <span class="comment"></span><span class="comment">                /*! if outputLen &lt; MinEncodedSize, the most significant bytes will be dropped</span><a name="l00081"></a>00081 <span class="comment">                        if outputLen &gt; MinEncodedSize, the most significant bytes will be padded</span><a name="l00082"></a>00082 <span class="comment">                */</span><a name="l00083"></a>00083                 <span class="keywordtype">void</span> Encode(byte *output, <span class="keywordtype">size_t</span> outputLen) <span class="keyword">const</span>;<span class="comment"></span><a name="l00084"></a>00084 <span class="comment">                //!</span><a name="l00085"></a>00085 <span class="comment"></span>                <span class="keywordtype">void</span> Encode(<a class="code" href="class_buffered_transformation.html" title="interface for buffered transformations">BufferedTransformation</a> &amp;bt, <span class="keywordtype">size_t</span> outputLen) <span class="keyword">const</span>;<a name="l00086"></a>00086 <span class="comment"></span><a name="l00087"></a>00087 <span class="comment">                //!</span><a name="l00088"></a>00088 <span class="comment"></span>                <span class="keywordtype">void</span> Decode(<span class="keyword">const</span> byte *input, <span class="keywordtype">size_t</span> inputLen);<span class="comment"></span><a name="l00089"></a>00089 <span class="comment">                //! </span><a name="l00090"></a>00090 <span class="comment"></span>                <span class="comment">//* Precondition: bt.MaxRetrievable() &gt;= inputLen</span><a name="l00091"></a>00091                 <span class="keywordtype">void</span> Decode(<a class="code" href="class_buffered_transformation.html" title="interface for buffered transformations">BufferedTransformation</a> &amp;bt, <span class="keywordtype">size_t</span> inputLen);<a name="l00092"></a>00092 <span class="comment"></span><a name="l00093"></a>00093 <span class="comment">                //! encode value as big-endian octet string</span><a name="l00094"></a>00094 <span class="comment"></span>                <span class="keywordtype">void</span> DEREncodeAsOctetString(<a class="code" href="class_buffered_transformation.html" title="interface for buffered transformations">BufferedTransformation</a> &amp;bt, <span class="keywordtype">size_t</span> length) <span class="keyword">const</span>;<span class="comment"></span><a name="l00095"></a>00095 <span class="comment">                //! decode value as big-endian octet string</span><a name="l00096"></a>00096 <span class="comment"></span>                <span class="keywordtype">void</span> BERDecodeAsOctetString(<a class="code" href="class_buffered_transformation.html" title="interface for buffered transformations">BufferedTransformation</a> &amp;bt, <span class="keywordtype">size_t</span> length);<span class="comment"></span><a name="l00097"></a>00097 <span class="comment">        //@}</span><a name="l00098"></a>00098 <span class="comment"></span><span class="comment"></span><a name="l00099"></a>00099 <span class="comment">        //! \name ACCESSORS</span><a name="l00100"></a>00100 <span class="comment"></span><span class="comment">        //@{</span><a name="l00101"></a>00101 <span class="comment"></span><span class="comment">                //! number of significant bits = Degree() + 1</span><a name="l00102"></a>00102 <span class="comment"></span>                <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> BitCount() <span class="keyword">const</span>;<span class="comment"></span><a name="l00103"></a>00103 <span class="comment">                //! number of significant bytes = ceiling(BitCount()/8)</span><a name="l00104"></a>00104 <span class="comment"></span>                <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> ByteCount() <span class="keyword">const</span>;<span class="comment"></span><a name="l00105"></a>00105 <span class="comment">                //! number of significant words = ceiling(ByteCount()/sizeof(word))</span><a name="l00106"></a>00106 <span class="comment"></span>                <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> WordCount() <span class="keyword">const</span>;<a name="l00107"></a>00107 <span class="comment"></span><a name="l00108"></a>00108 <span class="comment">                //! return the n-th bit, n=0 being the least significant bit</span><a name="l00109"></a><a class="code" href="class_polynomial_mod2.html#fcf3588d3c594c24370c5a08366af970">00109</a> <span class="comment"></span>                <span class="keywordtype">bool</span> GetBit(<span class="keywordtype">size_t</span> n)<span class="keyword"> const </span>{<span class="keywordflow">return</span> GetCoefficient(n)!=0;}<span class="comment"></span><a name="l00110"></a>00110 <span class="comment">                //! return the n-th byte</span><a name="l00111"></a>00111 <span class="comment"></span>                byte GetByte(<span class="keywordtype">size_t</span> n) <span class="keyword">const</span>;<a name="l00112"></a>00112 <span class="comment"></span><a name="l00113"></a>00113 <span class="comment">                //! the zero polynomial will return a degree of -1</span><a name="l00114"></a><a class="code" href="class_polynomial_mod2.html#2d0e58a23b81b33ab3ccf9b7aa498603">00114</a> <span class="comment"></span>                <span class="keywordtype">signed</span> <span class="keywordtype">int</span> Degree()<span class="keyword"> const </span>{<span class="keywordflow">return</span> BitCount()-1;}<span class="comment"></span><a name="l00115"></a>00115 <span class="comment">                //! degree + 1</span><a name="l00116"></a><a class="code" href="class_polynomial_mod2.html#92653519c01aa965f80a24d6952bc34e">00116</a> <span class="comment"></span>                <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> CoefficientCount()<span class="keyword"> const </span>{<span class="keywordflow">return</span> BitCount();}<span class="comment"></span><a name="l00117"></a>00117 <span class="comment">                //! return coefficient for x^i</span><a name="l00118"></a><a class="code" href="class_polynomial_mod2.html#f6e946183e623ed1303a43c2b84b6a1f">00118</a> <span class="comment"></span>                <span class="keywordtype">int</span> GetCoefficient(<span class="keywordtype">size_t</span> i)<span class="keyword"> const</span><a name="l00119"></a>00119 <span class="keyword">                        </span>{<span class="keywordflow">return</span> (i/WORD_BITS &lt; reg.size()) ? <span class="keywordtype">int</span>(reg[i/WORD_BITS] &gt;&gt; (i % WORD_BITS)) &amp; 1 : 0;}<span class="comment"></span><a name="l00120"></a>00120 <span class="comment">                //! return coefficient for x^i</span><a name="l00121"></a><a class="code" href="class_polynomial_mod2.html#bfbd3eee725068a94239e7581b43fe45">00121</a> <span class="comment"></span>                <span class="keywordtype">int</span> operator[](<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i)<span class="keyword"> const </span>{<span class="keywordflow">return</span> GetCoefficient(i);}<a name="l00122"></a>00122 <span class="comment"></span><a name="l00123"></a>00123 <span class="comment">                //!</span><a name="l00124"></a><a class="code" href="class_polynomial_mod2.html#91d774c1b3a0b936317265dbf7e5ad75">00124</a> <span class="comment"></span>                <span class="keywordtype">bool</span> IsZero()<span class="keyword"> const </span>{<span class="keywordflow">return</span> !*<span class="keyword">this</span>;}<span class="comment"></span><a name="l00125"></a>00125 <span class="comment">                //!</span><a name="l00126"></a>00126 <span class="comment"></span>                <span class="keywordtype">bool</span> Equals(<span class="keyword">const</span> PolynomialMod2 &amp;rhs) <span class="keyword">const</span>;<span class="comment"></span><a name="l00127"></a>00127 <span class="comment">        //@}</span><a name="l00128"></a>00128 <span class="comment"></span><span class="comment"></span><a name="l00129"></a>00129 <span class="comment">        //! \name MANIPULATORS</span><a name="l00130"></a>00130 <span class="comment"></span><span class="comment">        //@{</span><a name="l00131"></a>00131 <span class="comment"></span><span class="comment">                //!</span><a name="l00132"></a>00132 <span class="comment"></span>                PolynomialMod2&amp;  operator=(<span class="keyword">const</span> PolynomialMod2&amp; t);<span class="comment"></span><a name="l00133"></a>00133 <span class="comment">                //!</span><a name="l00134"></a>00134 <span class="comment"></span>                PolynomialMod2&amp;  operator&amp;=(<span class="keyword">const</span> PolynomialMod2&amp; t);<span class="comment"></span><a name="l00135"></a>00135 <span class="comment">                //!</span><a name="l00136"></a>00136 <span class="comment"></span>                PolynomialMod2&amp;  operator^=(<span class="keyword">const</span> PolynomialMod2&amp; t);<span class="comment"></span><a name="l00137"></a>00137 <span class="comment">                //!</span><a name="l00138"></a><a class="code" href="class_polynomial_mod2.html#074e88a48db114f9f2e7ca859401c24d">00138</a> <span class="comment"></span>                PolynomialMod2&amp;  operator+=(<span class="keyword">const</span> PolynomialMod2&amp; t) {<span class="keywordflow">return</span> *<span class="keyword">this</span> ^= t;}<span class="comment"></span><a name="l00139"></a>00139 <span class="comment">                //!</span><a name="l00140"></a><a class="code" href="class_polynomial_mod2.html#a4e227e47fe190e2964f7ae00aa495ee">00140</a> <span class="comment"></span>                PolynomialMod2&amp;  operator-=(<span class="keyword">const</span> PolynomialMod2&amp; t) {<span class="keywordflow">return</span> *<span class="keyword">this</span> ^= t;}<span class="comment"></span><a name="l00141"></a>00141 <span class="comment">                //!</span><a name="l00142"></a>00142 <span class="comment"></span>                PolynomialMod2&amp;  operator*=(<span class="keyword">const</span> PolynomialMod2&amp; t);<span class="comment"></span><a name="l00143"></a>00143 <span class="comment">                //!</span><a name="l00144"></a>00144 <span class="comment"></span>                PolynomialMod2&amp;  operator/=(<span class="keyword">const</span> PolynomialMod2&amp; t);<span class="comment"></span><a name="l00145"></a>00145 <span class="comment">                //!</span><a name="l00146"></a>00146 <span class="comment"></span>                PolynomialMod2&amp;  operator%=(<span class="keyword">const</span> PolynomialMod2&amp; t);<span class="comment"></span><a name="l00147"></a>00147 <span class="comment">                //!</span><a name="l00148"></a>00148 <span class="comment"></span>                PolynomialMod2&amp;  operator&lt;&lt;=(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span>);<span class="comment"></span><a name="l00149"></a>00149 <span class="comment">                //!</span><a name="l00150"></a>00150 <span class="comment"></span>                PolynomialMod2&amp;  operator&gt;&gt;=(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span>);<a name="l00151"></a>00151 <span class="comment"></span><a name="l00152"></a>00152 <span class="comment">                //!</span><a name="l00153"></a>00153 <span class="comment"></span>                <span class="keywordtype">void</span> Randomize(<a class="code" href="class_random_number_generator.html" title="interface for random number generators">RandomNumberGenerator</a> &amp;rng, <span class="keywordtype">size_t</span> bitcount);<a name="l00154"></a>00154 <span class="comment"></span><a name="l00155"></a>00155 <span class="comment">                //!</span><a name="l00156"></a>00156 <span class="comment"></span>                <span class="keywordtype">void</span> SetBit(<span class="keywordtype">size_t</span> i, <span class="keywordtype">int</span> value = 1);<span class="comment"></span><a name="l00157"></a>00157 <span class="comment">                //! set the n-th byte to value</span><a name="l00158"></a>00158 <span class="comment"></span>                <span class="keywordtype">void</span> SetByte(<span class="keywordtype">size_t</span> n, byte value);<a name="l00159"></a>00159 <span class="comment"></span><a name="l00160"></a>00160 <span class="comment">                //!</span><a name="l00161"></a><a class="code" href="class_polynomial_mod2.html#862faf0cf7d2a2d8a30cd2a17c3d9146">00161</a> <span class="comment"></span>                <span class="keywordtype">void</span> SetCoefficient(<span class="keywordtype">size_t</span> i, <span class="keywordtype">int</span> value) {SetBit(i, value);}<a name="l00162"></a>00162 <span class="comment"></span><a name="l00163"></a>00163 <span class="comment">                //!</span><a name="l00164"></a><a class="code" href="class_polynomial_mod2.html#21587324d54a4ae453960770b18c398d">00164</a> <span class="comment"></span>                <span class="keywordtype">void</span> <a class="code" href="gf2n_8h.html#cd9c045f0b5c2a7595a8a0872dc80f59">swap</a>(PolynomialMod2 &amp;a) {reg.swap(a.<a class="code" href="class_polynomial_mod2.html#68853b1b5d6d0361cd0b16f1889466a4">reg</a>);}<span class="comment"></span><a name="l00165"></a>00165 <span class="comment">        //@}</span><a name="l00166"></a>00166 <span class="comment"></span><span class="comment"></span><a name="l00167"></a>00167 <span class="comment">        //! \name UNARY OPERATORS</span><a name="l00168"></a>00168 <span class="comment"></span><span class="comment">        //@{</span><a name="l00169"></a>00169 <span class="comment"></span><span class="comment">                //!</span><a name="l00170"></a>00170 <span class="comment"></span>                <span class="keywordtype">bool</span>                    operator!() <span class="keyword">const</span>;<span class="comment"></span><a name="l00171"></a>00171 <span class="comment">                //!</span><a name="l00172"></a><a class="code" href="class_polynomial_mod2.html#2638a0fb364145eb07a3cd6ed58de1af">00172</a> <span class="comment"></span>                PolynomialMod2  <a class="code" href="gf2n_8h.html#f90f6d4d1dec04baadfc546843f8da4c">operator+</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> *<span class="keyword">this</span>;}<span class="comment"></span><a name="l00173"></a>00173 <span class="comment">                //!</span><a name="l00174"></a><a class="code" href="class_polynomial_mod2.html#bcf3e64ba4bb2f0aad40c217397284d4">00174</a> <span class="comment"></span>                PolynomialMod2  <a class="code" href="gf2n_8h.html#af85a1c53439d93124cf51fdefb0a717">operator-</a>()<span class="keyword"> const </span>{<span class="keywordflow">return</span> *<span class="keyword">this</span>;}<span class="comment"></span><a name="l00175"></a>00175 <span class="comment">        //@}</span><a name="l00176"></a>00176 <span class="comment"></span><span class="comment"></span><a name="l00177"></a>00177 <span class="comment">        //! \name BINARY OPERATORS</span>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -