📄 nbtheory_8cpp-source.html
字号:
<a name="l00364"></a>00364 {<a name="l00365"></a>00365 assert(<a class="code" href="class_prime_sieve.html#e4a118cd164def0137049b041a40df5a">m_step</a>%2==0);<a name="l00366"></a>00366 Integer qFirst = (<a class="code" href="class_prime_sieve.html#505052e929448429944305dbbf8e3d9b">m_first</a>-<a class="code" href="class_prime_sieve.html#b088fe1cbe49ca396ffee53f94da0706">m_delta</a>) >> 1;<a name="l00367"></a>00367 Integer halfStep = <a class="code" href="class_prime_sieve.html#e4a118cd164def0137049b041a40df5a">m_step</a> >> 1;<a name="l00368"></a>00368 <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = 0; i < primeTableSize; ++i)<a name="l00369"></a>00369 {<a name="l00370"></a>00370 word16 p = primeTable[i];<a name="l00371"></a>00371 word16 stepInv = (word16)<a class="code" href="class_prime_sieve.html#e4a118cd164def0137049b041a40df5a">m_step</a>.<a class="code" href="class_integer.html#881f9c714ee42f35718725a43d4d7db3" title="calculate multiplicative inverse of *this mod n">InverseMod</a>(p);<a name="l00372"></a>00372 <a class="code" href="class_prime_sieve.html#ef7632203a02890568748c22506d6247">SieveSingle</a>(<a class="code" href="class_prime_sieve.html#43d578612bed4a6c9ef353987c0407f8">m_sieve</a>, p, <a class="code" href="class_prime_sieve.html#505052e929448429944305dbbf8e3d9b">m_first</a>, <a class="code" href="class_prime_sieve.html#e4a118cd164def0137049b041a40df5a">m_step</a>, stepInv);<a name="l00373"></a>00373 <a name="l00374"></a>00374 word16 halfStepInv = 2*stepInv < p ? 2*stepInv : 2*stepInv-p;<a name="l00375"></a>00375 <a class="code" href="class_prime_sieve.html#ef7632203a02890568748c22506d6247">SieveSingle</a>(<a class="code" href="class_prime_sieve.html#43d578612bed4a6c9ef353987c0407f8">m_sieve</a>, p, qFirst, halfStep, halfStepInv);<a name="l00376"></a>00376 }<a name="l00377"></a>00377 }<a name="l00378"></a>00378 }<a name="l00379"></a>00379 <a name="l00380"></a>00380 <span class="keywordtype">bool</span> FirstPrime(Integer &p, <span class="keyword">const</span> Integer &max, <span class="keyword">const</span> Integer &equiv, <span class="keyword">const</span> Integer &mod, <span class="keyword">const</span> <a class="code" href="class_prime_selector.html">PrimeSelector</a> *pSelector)<a name="l00381"></a>00381 {<a name="l00382"></a>00382 assert(!equiv.<a class="code" href="class_integer.html#d767ae81c89be3804da8785e132d2d1f">IsNegative</a>() && equiv < mod);<a name="l00383"></a>00383 <a name="l00384"></a>00384 Integer gcd = GCD(equiv, mod);<a name="l00385"></a>00385 <span class="keywordflow">if</span> (gcd != <a class="code" href="class_integer.html#8c070592581bf6c2f928c72bfa1c1638" title="avoid calling constructors for these frequently used integers">Integer::One</a>())<a name="l00386"></a>00386 {<a name="l00387"></a>00387 <span class="comment">// the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv)</span><a name="l00388"></a>00388 <span class="keywordflow">if</span> (p <= gcd && gcd <= max && IsPrime(gcd) && (!pSelector || pSelector-><a class="code" href="class_prime_selector.html#44f47be2ff2e8ce1813cb0781d725181">IsAcceptable</a>(gcd)))<a name="l00389"></a>00389 {<a name="l00390"></a>00390 p = gcd;<a name="l00391"></a>00391 <span class="keywordflow">return</span> <span class="keyword">true</span>;<a name="l00392"></a>00392 }<a name="l00393"></a>00393 <span class="keywordflow">else</span><a name="l00394"></a>00394 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00395"></a>00395 }<a name="l00396"></a>00396 <a name="l00397"></a>00397 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> primeTableSize;<a name="l00398"></a>00398 <span class="keyword">const</span> word16 * primeTable = GetPrimeTable(primeTableSize);<a name="l00399"></a>00399 <a name="l00400"></a>00400 <span class="keywordflow">if</span> (p <= primeTable[primeTableSize-1])<a name="l00401"></a>00401 {<a name="l00402"></a>00402 <span class="keyword">const</span> word16 *pItr;<a name="l00403"></a>00403 <a name="l00404"></a>00404 --p;<a name="l00405"></a>00405 <span class="keywordflow">if</span> (p.<a class="code" href="class_integer.html#13ddbfd8e9729932c2a99b0dff530978">IsPositive</a>())<a name="l00406"></a>00406 pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (word)p.<a class="code" href="class_integer.html#2e90d8f4c5a13e203b94f9abc24d733f" title="return equivalent signed long if possible, otherwise undefined">ConvertToLong</a>());<a name="l00407"></a>00407 <span class="keywordflow">else</span><a name="l00408"></a>00408 pItr = primeTable;<a name="l00409"></a>00409 <a name="l00410"></a>00410 <span class="keywordflow">while</span> (pItr < primeTable+primeTableSize && !(*pItr%mod == equiv && (!pSelector || pSelector-><a class="code" href="class_prime_selector.html#44f47be2ff2e8ce1813cb0781d725181">IsAcceptable</a>(*pItr))))<a name="l00411"></a>00411 ++pItr;<a name="l00412"></a>00412 <a name="l00413"></a>00413 <span class="keywordflow">if</span> (pItr < primeTable+primeTableSize)<a name="l00414"></a>00414 {<a name="l00415"></a>00415 p = *pItr;<a name="l00416"></a>00416 <span class="keywordflow">return</span> p <= max;<a name="l00417"></a>00417 }<a name="l00418"></a>00418 <a name="l00419"></a>00419 p = primeTable[primeTableSize-1]+1;<a name="l00420"></a>00420 }<a name="l00421"></a>00421 <a name="l00422"></a>00422 assert(p > primeTable[primeTableSize-1]);<a name="l00423"></a>00423 <a name="l00424"></a>00424 <span class="keywordflow">if</span> (mod.<a class="code" href="class_integer.html#ed4bb7208a18b986ef3e1a7d92e06d1d">IsOdd</a>())<a name="l00425"></a>00425 <span class="keywordflow">return</span> FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector);<a name="l00426"></a>00426 <a name="l00427"></a>00427 p += (equiv-p)%mod;<a name="l00428"></a>00428 <a name="l00429"></a>00429 <span class="keywordflow">if</span> (p>max)<a name="l00430"></a>00430 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00431"></a>00431 <a name="l00432"></a>00432 <a class="code" href="class_prime_sieve.html">PrimeSieve</a> sieve(p, max, mod);<a name="l00433"></a>00433 <a name="l00434"></a>00434 <span class="keywordflow">while</span> (sieve.NextCandidate(p))<a name="l00435"></a>00435 {<a name="l00436"></a>00436 <span class="keywordflow">if</span> ((!pSelector || pSelector-><a class="code" href="class_prime_selector.html#44f47be2ff2e8ce1813cb0781d725181">IsAcceptable</a>(p)) && FastProbablePrimeTest(p) && IsPrime(p))<a name="l00437"></a>00437 <span class="keywordflow">return</span> <span class="keyword">true</span>;<a name="l00438"></a>00438 }<a name="l00439"></a>00439 <a name="l00440"></a>00440 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00441"></a>00441 }<a name="l00442"></a>00442 <a name="l00443"></a>00443 <span class="comment">// the following two functions are based on code and comments provided by Preda Mihailescu</span><a name="l00444"></a>00444 <span class="keyword">static</span> <span class="keywordtype">bool</span> ProvePrime(<span class="keyword">const</span> Integer &p, <span class="keyword">const</span> Integer &q)<a name="l00445"></a>00445 {<a name="l00446"></a>00446 assert(p < q*q*q);<a name="l00447"></a>00447 assert(p % q == 1);<a name="l00448"></a>00448 <a name="l00449"></a>00449 <span class="comment">// this is the Quisquater test. Numbers p having passed the Lucas - Lehmer test</span><a name="l00450"></a>00450 <span class="comment">// for q and verifying p < q^3 can only be built up of two factors, both = 1 mod q,</span><a name="l00451"></a>00451 <span class="comment">// or be prime. The next two lines build the discriminant of a quadratic equation</span><a name="l00452"></a>00452 <span class="comment">// which holds iff p is built up of two factors (excercise ... )</span><a name="l00453"></a>00453 <a name="l00454"></a>00454 Integer r = (p-1)/q;<a name="l00455"></a>00455 <span class="keywordflow">if</span> (((r%q).Squared()-4*(r/q)).IsSquare())<a name="l00456"></a>00456 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00457"></a>00457 <a name="l00458"></a>00458 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> primeTableSize;<a name="l00459"></a>00459 <span class="keyword">const</span> word16 * primeTable = GetPrimeTable(primeTableSize);<a name="l00460"></a>00460 <a name="l00461"></a>00461 assert(primeTableSize >= 50);<a name="l00462"></a>00462 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i=0; i<50; i++) <a name="l00463"></a>00463 {<a name="l00464"></a>00464 Integer b = a_exp_b_mod_c(primeTable[i], r, p);<a name="l00465"></a>00465 <span class="keywordflow">if</span> (b != 1) <a name="l00466"></a>00466 <span class="keywordflow">return</span> a_exp_b_mod_c(b, q, p) == 1;<a name="l00467"></a>00467 }<a name="l00468"></a>00468 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00469"></a>00469 }<a name="l00470"></a>00470 <a name="l00471"></a>00471 Integer MihailescuProvablePrime(<a class="code" href="class_random_number_generator.html" title="interface for random number generators">RandomNumberGenerator</a> &rng, <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> pbits)<a name="l00472"></a>00472 {<a name="l00473"></a>00473 Integer p;<a name="l00474"></a>00474 Integer minP = <a class="code" href="class_integer.html#de53248f5dbb520273a70856b975417c" title="return the integer 2**e">Integer::Power2</a>(pbits-1);<a name="l00475"></a>00475 Integer maxP = <a class="code" href="class_integer.html#de53248f5dbb520273a70856b975417c" title="return the integer 2**e">Integer::Power2</a>(pbits) - 1;<a name="l00476"></a>00476 <a name="l00477"></a>00477 <span class="keywordflow">if</span> (maxP <= Integer(s_lastSmallPrime).Squared())<a name="l00478"></a>00478 {<a name="l00479"></a>00479 <span class="comment">// Randomize() will generate a prime provable by trial division</span><a name="l00480"></a>00480 p.<a class="code" href="class_integer.html#0f0574b9cae3cddf62c155da93085f0d">Randomize</a>(rng, minP, maxP, <a class="code" href="class_integer.html#9b4088ac01abf76b9ba60060abccb7a3fe686f55e5b6768b20009a12522bd0d9">Integer::PRIME</a>);<a name="l00481"></a>00481 <span class="keywordflow">return</span> p;<a name="l00482"></a>00482 }<a name="l00483"></a>00483 <a name="l00484"></a>00484 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> qbits = (pbits+2)/3 + 1 + rng.<a class="code" href="class_random_number_generator.html#c06c9f5e66f35d643e4192f231b8a4cd" title="generate a random 32 bit word in the range min to max, inclusive">GenerateWord32</a>(0, pbits/36);<a name="l00485"></a>00485 Integer q = MihailescuProvablePrime(rng, qbits);<a name="l00486"></a>00486 Integer q2 = q<<1;<a name="l00487"></a>00487 <a name="l00488"></a>00488 <span class="keywordflow">while</span> (<span class="keyword">true</span>)<a name="l00489"></a>00489 {<a name="l00490"></a>00490 <span class="comment">// this initializes the sieve to search in the arithmetic</span><a name="l00491"></a>00491 <span class="comment">// progression p = p_0 + \lambda * q2 = p_0 + 2 * \lambda * q,</span>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -