📄 nbtheory_8cpp-source.html
字号:
<a name="l00108"></a>00108 <span class="keywordflow">return</span> n==2 || n==3;<a name="l00109"></a>00109 <a name="l00110"></a>00110 assert(n>3 && b>1 && b<n-1);<a name="l00111"></a>00111 <a name="l00112"></a>00112 <span class="keywordflow">if</span> ((n.<a class="code" href="class_integer.html#fedf9af097a3417d8bd3742ec53f9593">IsEven</a>() && n!=2) || GCD(b, n) != 1)<a name="l00113"></a>00113 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00114"></a>00114 <a name="l00115"></a>00115 <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a> nminus1 = (n-1);<a name="l00116"></a>00116 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> a;<a name="l00117"></a>00117 <a name="l00118"></a>00118 <span class="comment">// calculate a = largest power of 2 that divides (n-1)</span><a name="l00119"></a>00119 <span class="keywordflow">for</span> (a=0; ; a++)<a name="l00120"></a>00120 <span class="keywordflow">if</span> (nminus1.<a class="code" href="class_integer.html#0e377d23bde55fc7dc6ea2208c587d19" title="return the i-th bit, i=0 being the least significant bit">GetBit</a>(a))<a name="l00121"></a>00121 <span class="keywordflow">break</span>;<a name="l00122"></a>00122 <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a> m = nminus1>>a;<a name="l00123"></a>00123 <a name="l00124"></a>00124 <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a> z = a_exp_b_mod_c(b, m, n);<a name="l00125"></a>00125 <span class="keywordflow">if</span> (z==1 || z==nminus1)<a name="l00126"></a>00126 <span class="keywordflow">return</span> <span class="keyword">true</span>;<a name="l00127"></a>00127 <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> j=1; j<a; j++)<a name="l00128"></a>00128 {<a name="l00129"></a>00129 z = z.<a class="code" href="class_integer.html#7b5e639045868c5ac338f4180e1c7efa">Squared</a>()%n;<a name="l00130"></a>00130 <span class="keywordflow">if</span> (z==nminus1)<a name="l00131"></a>00131 <span class="keywordflow">return</span> <span class="keyword">true</span>;<a name="l00132"></a>00132 <span class="keywordflow">if</span> (z==1)<a name="l00133"></a>00133 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00134"></a>00134 }<a name="l00135"></a>00135 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00136"></a>00136 }<a name="l00137"></a>00137 <a name="l00138"></a>00138 <span class="keywordtype">bool</span> RabinMillerTest(<a class="code" href="class_random_number_generator.html" title="interface for random number generators">RandomNumberGenerator</a> &rng, <span class="keyword">const</span> <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a> &n, <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> rounds)<a name="l00139"></a>00139 {<a name="l00140"></a>00140 <span class="keywordflow">if</span> (n <= 3)<a name="l00141"></a>00141 <span class="keywordflow">return</span> n==2 || n==3;<a name="l00142"></a>00142 <a name="l00143"></a>00143 assert(n>3);<a name="l00144"></a>00144 <a name="l00145"></a>00145 <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a> b;<a name="l00146"></a>00146 <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0; i<rounds; i++)<a name="l00147"></a>00147 {<a name="l00148"></a>00148 b.<a class="code" href="class_integer.html#0f0574b9cae3cddf62c155da93085f0d">Randomize</a>(rng, 2, n-2);<a name="l00149"></a>00149 <span class="keywordflow">if</span> (!IsStrongProbablePrime(n, b))<a name="l00150"></a>00150 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00151"></a>00151 }<a name="l00152"></a>00152 <span class="keywordflow">return</span> <span class="keyword">true</span>;<a name="l00153"></a>00153 }<a name="l00154"></a>00154 <a name="l00155"></a>00155 <span class="keywordtype">bool</span> IsLucasProbablePrime(<span class="keyword">const</span> <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a> &n)<a name="l00156"></a>00156 {<a name="l00157"></a>00157 <span class="keywordflow">if</span> (n <= 1)<a name="l00158"></a>00158 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00159"></a>00159 <a name="l00160"></a>00160 <span class="keywordflow">if</span> (n.<a class="code" href="class_integer.html#fedf9af097a3417d8bd3742ec53f9593">IsEven</a>())<a name="l00161"></a>00161 <span class="keywordflow">return</span> n==2;<a name="l00162"></a>00162 <a name="l00163"></a>00163 assert(n>2);<a name="l00164"></a>00164 <a name="l00165"></a>00165 <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a> b=3;<a name="l00166"></a>00166 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0;<a name="l00167"></a>00167 <span class="keywordtype">int</span> j;<a name="l00168"></a>00168 <a name="l00169"></a>00169 <span class="keywordflow">while</span> ((j=Jacobi(b.<a class="code" href="class_integer.html#7b5e639045868c5ac338f4180e1c7efa">Squared</a>()-4, n)) == 1)<a name="l00170"></a>00170 {<a name="l00171"></a>00171 <span class="keywordflow">if</span> (++i==64 && n.<a class="code" href="class_integer.html#3acfdfd7aa905d2600073449c31eb3c4" title="return whether this integer is a perfect square">IsSquare</a>()) <span class="comment">// avoid infinite loop if n is a square</span><a name="l00172"></a>00172 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00173"></a>00173 ++b; ++b;<a name="l00174"></a>00174 }<a name="l00175"></a>00175 <a name="l00176"></a>00176 <span class="keywordflow">if</span> (j==0) <a name="l00177"></a>00177 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00178"></a>00178 <span class="keywordflow">else</span><a name="l00179"></a>00179 <span class="keywordflow">return</span> Lucas(n+1, b, n)==2;<a name="l00180"></a>00180 }<a name="l00181"></a>00181 <a name="l00182"></a>00182 <span class="keywordtype">bool</span> IsStrongLucasProbablePrime(<span class="keyword">const</span> <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a> &n)<a name="l00183"></a>00183 {<a name="l00184"></a>00184 <span class="keywordflow">if</span> (n <= 1)<a name="l00185"></a>00185 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00186"></a>00186 <a name="l00187"></a>00187 <span class="keywordflow">if</span> (n.<a class="code" href="class_integer.html#fedf9af097a3417d8bd3742ec53f9593">IsEven</a>())<a name="l00188"></a>00188 <span class="keywordflow">return</span> n==2;<a name="l00189"></a>00189 <a name="l00190"></a>00190 assert(n>2);<a name="l00191"></a>00191 <a name="l00192"></a>00192 <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a> b=3;<a name="l00193"></a>00193 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0;<a name="l00194"></a>00194 <span class="keywordtype">int</span> j;<a name="l00195"></a>00195 <a name="l00196"></a>00196 <span class="keywordflow">while</span> ((j=Jacobi(b.<a class="code" href="class_integer.html#7b5e639045868c5ac338f4180e1c7efa">Squared</a>()-4, n)) == 1)<a name="l00197"></a>00197 {<a name="l00198"></a>00198 <span class="keywordflow">if</span> (++i==64 && n.<a class="code" href="class_integer.html#3acfdfd7aa905d2600073449c31eb3c4" title="return whether this integer is a perfect square">IsSquare</a>()) <span class="comment">// avoid infinite loop if n is a square</span><a name="l00199"></a>00199 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00200"></a>00200 ++b; ++b;<a name="l00201"></a>00201 }<a name="l00202"></a>00202 <a name="l00203"></a>00203 <span class="keywordflow">if</span> (j==0) <a name="l00204"></a>00204 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00205"></a>00205 <a name="l00206"></a>00206 <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a> n1 = n+1;<a name="l00207"></a>00207 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> a;<a name="l00208"></a>00208 <a name="l00209"></a>00209 <span class="comment">// calculate a = largest power of 2 that divides n1</span><a name="l00210"></a>00210 <span class="keywordflow">for</span> (a=0; ; a++)<a name="l00211"></a>00211 <span class="keywordflow">if</span> (n1.<a class="code" href="class_integer.html#0e377d23bde55fc7dc6ea2208c587d19" title="return the i-th bit, i=0 being the least significant bit">GetBit</a>(a))<a name="l00212"></a>00212 <span class="keywordflow">break</span>;<a name="l00213"></a>00213 <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a> m = n1>>a;<a name="l00214"></a>00214 <a name="l00215"></a>00215 <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a> z = Lucas(m, b, n);<a name="l00216"></a>00216 <span class="keywordflow">if</span> (z==2 || z==n-2)<a name="l00217"></a>00217 <span class="keywordflow">return</span> <span class="keyword">true</span>;<a name="l00218"></a>00218 <span class="keywordflow">for</span> (i=1; i<a; i++)<a name="l00219"></a>00219 {<a name="l00220"></a>00220 z = (z.<a class="code" href="class_integer.html#7b5e639045868c5ac338f4180e1c7efa">Squared</a>()-2)%n;<a name="l00221"></a>00221 <span class="keywordflow">if</span> (z==n-2)<a name="l00222"></a>00222 <span class="keywordflow">return</span> <span class="keyword">true</span>;<a name="l00223"></a>00223 <span class="keywordflow">if</span> (z==2)<a name="l00224"></a>00224 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00225"></a>00225 }<a name="l00226"></a>00226 <span class="keywordflow">return</span> <span class="keyword">false</span>;<a name="l00227"></a>00227 }<a name="l00228"></a>00228 <a name="l00229"></a><a class="code" href="struct_new_last_small_prime_squared.html">00229</a> <span class="keyword">struct </span><a class="code" href="struct_new_last_small_prime_squared.html">NewLastSmallPrimeSquared</a><a name="l00230"></a>00230 {<a name="l00231"></a><a class="code" href="struct_new_last_small_prime_squared.html#87ef0701e5103ae502fb30e31b9444e2">00231</a> <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a> * <a class="code" href="struct_new_last_small_prime_squared.html#87ef0701e5103ae502fb30e31b9444e2">operator()</a>()<span class="keyword"> const</span><a name="l00232"></a>00232 <span class="keyword"> </span>{<a name="l00233"></a>00233 <span class="keywordflow">return</span> <span class="keyword">new</span> <a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a>(<a class="code" href="class_integer.html" title="multiple precision integer and basic arithmetics">Integer</a>(s_lastSmallPrime).Squared());<a name="l00234"></a>00234 }<a name="l00235"></a>00235 };
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -