📄 gf2n_8cpp-source.html
字号:
<a name="l00301"></a>00301 remainder -= divisor;<a name="l00302"></a>00302 quotient.<a class="code" href="class_polynomial_mod2.html#b3855a5f77e9bbc7d82a4239ccf59329">SetBit</a>(i);<a name="l00303"></a>00303 }<a name="l00304"></a>00304 }<a name="l00305"></a>00305 }<a name="l00306"></a>00306 <a name="l00307"></a><a class="code" href="class_polynomial_mod2.html#91bb7fc668249f76ee3aea359daf0842">00307</a> <a class="code" href="class_polynomial_mod2.html" title="Polynomial with Coefficients in GF(2).">PolynomialMod2</a> <a class="code" href="class_polynomial_mod2.html#91bb7fc668249f76ee3aea359daf0842">PolynomialMod2::DividedBy</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_mod2.html" title="Polynomial with Coefficients in GF(2).">PolynomialMod2</a> &b)<span class="keyword"> const</span><a name="l00308"></a>00308 <span class="keyword"></span>{<a name="l00309"></a>00309 <a class="code" href="class_polynomial_mod2.html" title="Polynomial with Coefficients in GF(2).">PolynomialMod2</a> remainder, quotient;<a name="l00310"></a>00310 <a class="code" href="class_polynomial_mod2.html#73d92da2ee829619041eca82567b87bc" title="calculate r and q such that (a == d*q + r) && (deg(r) < deg(d))">PolynomialMod2::Divide</a>(remainder, quotient, *<span class="keyword">this</span>, b);<a name="l00311"></a>00311 <span class="keywordflow">return</span> quotient;<a name="l00312"></a>00312 }<a name="l00313"></a>00313 <a name="l00314"></a><a class="code" href="class_polynomial_mod2.html#1e1e201da250b5fe9ee142705e14ffdc">00314</a> <a class="code" href="class_polynomial_mod2.html" title="Polynomial with Coefficients in GF(2).">PolynomialMod2</a> <a class="code" href="class_polynomial_mod2.html#1e1e201da250b5fe9ee142705e14ffdc">PolynomialMod2::Modulo</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_mod2.html" title="Polynomial with Coefficients in GF(2).">PolynomialMod2</a> &b)<span class="keyword"> const</span><a name="l00315"></a>00315 <span class="keyword"></span>{<a name="l00316"></a>00316 <a class="code" href="class_polynomial_mod2.html" title="Polynomial with Coefficients in GF(2).">PolynomialMod2</a> remainder, quotient;<a name="l00317"></a>00317 <a class="code" href="class_polynomial_mod2.html#73d92da2ee829619041eca82567b87bc" title="calculate r and q such that (a == d*q + r) && (deg(r) < deg(d))">PolynomialMod2::Divide</a>(remainder, quotient, *<span class="keyword">this</span>, b);<a name="l00318"></a>00318 <span class="keywordflow">return</span> remainder;<a name="l00319"></a>00319 }<a name="l00320"></a>00320 <a name="l00321"></a><a class="code" href="class_polynomial_mod2.html#d73f6f1c7331f2b745c0d61f11d881b9">00321</a> <a class="code" href="class_polynomial_mod2.html" title="Polynomial with Coefficients in GF(2).">PolynomialMod2</a>& <a class="code" href="class_polynomial_mod2.html#d73f6f1c7331f2b745c0d61f11d881b9">PolynomialMod2::operator<<=</a>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> n)<a name="l00322"></a>00322 {<a name="l00323"></a>00323 <span class="keywordflow">if</span> (!reg.<a class="code" href="class_sec_block.html#f5999bffe3193e62719cc0792b0282a7">size</a>())<a name="l00324"></a>00324 <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00325"></a>00325 <a name="l00326"></a>00326 <span class="keywordtype">int</span> i;<a name="l00327"></a>00327 word u;<a name="l00328"></a>00328 word carry=0;<a name="l00329"></a>00329 word *r=reg;<a name="l00330"></a>00330 <a name="l00331"></a>00331 <span class="keywordflow">if</span> (n==1) <span class="comment">// special case code for most frequent case</span><a name="l00332"></a>00332 {<a name="l00333"></a>00333 i = (int)reg.<a class="code" href="class_sec_block.html#f5999bffe3193e62719cc0792b0282a7">size</a>();<a name="l00334"></a>00334 <span class="keywordflow">while</span> (i--)<a name="l00335"></a>00335 {<a name="l00336"></a>00336 u = *r;<a name="l00337"></a>00337 *r = (u << 1) | carry;<a name="l00338"></a>00338 carry = u >> (WORD_BITS-1);<a name="l00339"></a>00339 r++;<a name="l00340"></a>00340 }<a name="l00341"></a>00341 <a name="l00342"></a>00342 <span class="keywordflow">if</span> (carry)<a name="l00343"></a>00343 {<a name="l00344"></a>00344 reg.<a class="code" href="class_sec_block.html#8dea287fba8236b0979b52beece0ec1b" title="change size only if newSize > current size. contents are preserved">Grow</a>(reg.<a class="code" href="class_sec_block.html#f5999bffe3193e62719cc0792b0282a7">size</a>()+1);<a name="l00345"></a>00345 reg[reg.<a class="code" href="class_sec_block.html#f5999bffe3193e62719cc0792b0282a7">size</a>()-1] = carry;<a name="l00346"></a>00346 }<a name="l00347"></a>00347 <a name="l00348"></a>00348 <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00349"></a>00349 }<a name="l00350"></a>00350 <a name="l00351"></a>00351 <span class="keywordtype">int</span> shiftWords = n / WORD_BITS;<a name="l00352"></a>00352 <span class="keywordtype">int</span> shiftBits = n % WORD_BITS;<a name="l00353"></a>00353 <a name="l00354"></a>00354 <span class="keywordflow">if</span> (shiftBits)<a name="l00355"></a>00355 {<a name="l00356"></a>00356 i = (int)reg.<a class="code" href="class_sec_block.html#f5999bffe3193e62719cc0792b0282a7">size</a>();<a name="l00357"></a>00357 <span class="keywordflow">while</span> (i--)<a name="l00358"></a>00358 {<a name="l00359"></a>00359 u = *r;<a name="l00360"></a>00360 *r = (u << shiftBits) | carry;<a name="l00361"></a>00361 carry = u >> (WORD_BITS-shiftBits);<a name="l00362"></a>00362 r++;<a name="l00363"></a>00363 }<a name="l00364"></a>00364 }<a name="l00365"></a>00365 <a name="l00366"></a>00366 <span class="keywordflow">if</span> (carry)<a name="l00367"></a>00367 {<a name="l00368"></a>00368 reg.<a class="code" href="class_sec_block.html#8dea287fba8236b0979b52beece0ec1b" title="change size only if newSize > current size. contents are preserved">Grow</a>(reg.<a class="code" href="class_sec_block.html#f5999bffe3193e62719cc0792b0282a7">size</a>()+shiftWords+1);<a name="l00369"></a>00369 reg[reg.<a class="code" href="class_sec_block.html#f5999bffe3193e62719cc0792b0282a7">size</a>()-1] = carry;<a name="l00370"></a>00370 }<a name="l00371"></a>00371 <span class="keywordflow">else</span><a name="l00372"></a>00372 reg.<a class="code" href="class_sec_block.html#8dea287fba8236b0979b52beece0ec1b" title="change size only if newSize > current size. contents are preserved">Grow</a>(reg.<a class="code" href="class_sec_block.html#f5999bffe3193e62719cc0792b0282a7">size</a>()+shiftWords);<a name="l00373"></a>00373 <a name="l00374"></a>00374 <span class="keywordflow">if</span> (shiftWords)<a name="l00375"></a>00375 {<a name="l00376"></a>00376 <span class="keywordflow">for</span> (i = (<span class="keywordtype">int</span>)reg.<a class="code" href="class_sec_block.html#f5999bffe3193e62719cc0792b0282a7">size</a>()-1; i>=shiftWords; i--)<a name="l00377"></a>00377 reg[i] = reg[i-shiftWords];<a name="l00378"></a>00378 <span class="keywordflow">for</span> (; i>=0; i--)<a name="l00379"></a>00379 reg[i] = 0;<a name="l00380"></a>00380 }<a name="l00381"></a>00381 <a name="l00382"></a>00382 <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00383"></a>00383 }<a name="l00384"></a>00384 <a name="l00385"></a><a class="code" href="class_polynomial_mod2.html#16f09c3dcc4ac6019c4f42012b177a37">00385</a> <a class="code" href="class_polynomial_mod2.html" title="Polynomial with Coefficients in GF(2).">PolynomialMod2</a>& <a class="code" href="class_polynomial_mod2.html#16f09c3dcc4ac6019c4f42012b177a37">PolynomialMod2::operator>>=</a>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> n)<a name="l00386"></a>00386 {<a name="l00387"></a>00387 <span class="keywordflow">if</span> (!reg.<a class="code" href="class_sec_block.html#f5999bffe3193e62719cc0792b0282a7">size</a>())<a name="l00388"></a>00388 <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00389"></a>00389 <a name="l00390"></a>00390 <span class="keywordtype">int</span> shiftWords = n / WORD_BITS;<a name="l00391"></a>00391 <span class="keywordtype">int</span> shiftBits = n % WORD_BITS;<a name="l00392"></a>00392 <a name="l00393"></a>00393 <span class="keywordtype">size_t</span> i;<a name="l00394"></a>00394 word u;<a name="l00395"></a>00395 word carry=0;<a name="l00396"></a>00396 word *r=reg+reg.<a class="code" href="class_sec_block.html#f5999bffe3193e62719cc0792b0282a7">size</a>()-1;<a name="l00397"></a>00397 <a name="l00398"></a>00398 <span class="keywordflow">if</span> (shiftBits)<a name="l00399"></a>00399 {<a name="l00400"></a>00400 i = reg.<a class="code" href="class_sec_block.html#f5999bffe3193e62719cc0792b0282a7">size</a>();<a name="l00401"></a>00401 <span class="keywordflow">while</span> (i--)<a name="l00402"></a>00402 {<a name="l00403"></a>00403 u = *r;<a name="l00404"></a>00404 *r = (u >> shiftBits) | carry;<a name="l00405"></a>00405 carry = u << (WORD_BITS-shiftBits);<a name="l00406"></a>00406 r--;<a name="l00407"></a>00407 }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -