📄 polynomi_8cpp-source.html
字号:
<a name="l00313"></a>00313 <span class="keywordflow">return</span> quotient;<a name="l00314"></a>00314 }<a name="l00315"></a>00315 <a name="l00316"></a>00316 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00317"></a>00317 PolynomialOver<T> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T>::Modulo</a>(<span class="keyword">const</span> PolynomialOver<T>& t, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &ring)<span class="keyword"> const</span><a name="l00318"></a>00318 <span class="keyword"></span>{<a name="l00319"></a>00319 PolynomialOver<T> remainder, quotient;<a name="l00320"></a>00320 <a class="code" href="class_polynomial_over.html#e4e0b0beb7bfab492d6f7343630c2df9" title="calculate r and q such that (a == d*q + r) && (0 <= degree of r < degree...">Divide</a>(remainder, quotient, *<span class="keyword">this</span>, t, ring);<a name="l00321"></a>00321 <span class="keywordflow">return</span> remainder;<a name="l00322"></a>00322 }<a name="l00323"></a>00323 <a name="l00324"></a>00324 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00325"></a><a class="code" href="class_polynomial_over.html#1a24658cd38205e6a3edc607aaceedda">00325</a> PolynomialOver<T> <a class="code" href="class_polynomial_over.html#1a24658cd38205e6a3edc607aaceedda">PolynomialOver<T>::MultiplicativeInverse</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &ring)<span class="keyword"> const</span><a name="l00326"></a>00326 <span class="keyword"></span>{<a name="l00327"></a>00327 <span class="keywordflow">return</span> <a class="code" href="class_polynomial_over.html#604beee6d397108b3334eaeb564b641a" title="the zero polynomial will return a degree of -1">Degree</a>(ring)==0 ? ring.MultiplicativeInverse(m_coefficients[0]) : ring.Identity();<a name="l00328"></a>00328 }<a name="l00329"></a>00329 <a name="l00330"></a>00330 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00331"></a><a class="code" href="class_polynomial_over.html#bd97055ea77f4c511d84cbde55fee6a0">00331</a> <span class="keywordtype">bool</span> <a class="code" href="class_polynomial_over.html#bd97055ea77f4c511d84cbde55fee6a0">PolynomialOver<T>::IsUnit</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &ring)<span class="keyword"> const</span><a name="l00332"></a>00332 <span class="keyword"></span>{<a name="l00333"></a>00333 <span class="keywordflow">return</span> <a class="code" href="class_polynomial_over.html#604beee6d397108b3334eaeb564b641a" title="the zero polynomial will return a degree of -1">Degree</a>(ring)==0 && ring.IsUnit(m_coefficients[0]);<a name="l00334"></a>00334 }<a name="l00335"></a>00335 <a name="l00336"></a>00336 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00337"></a><a class="code" href="class_polynomial_over.html#f2e687246fa4366712cc024e62c799a0">00337</a> std::istream& <a class="code" href="class_polynomial_over.html#f2e687246fa4366712cc024e62c799a0">PolynomialOver<T>::Input</a>(std::istream &in, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &ring)<a name="l00338"></a>00338 {<a name="l00339"></a>00339 <span class="keywordtype">char</span> c;<a name="l00340"></a>00340 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> length = 0;<a name="l00341"></a>00341 <a class="code" href="class_sec_block.html" title="a block of memory allocated using A">SecBlock<char></a> str(length + 16);<a name="l00342"></a>00342 <span class="keywordtype">bool</span> paren = <span class="keyword">false</span>;<a name="l00343"></a>00343 <a name="l00344"></a>00344 std::ws(in);<a name="l00345"></a>00345 <a name="l00346"></a>00346 <span class="keywordflow">if</span> (in.peek() == <span class="charliteral">'('</span>)<a name="l00347"></a>00347 {<a name="l00348"></a>00348 paren = <span class="keyword">true</span>;<a name="l00349"></a>00349 in.get();<a name="l00350"></a>00350 }<a name="l00351"></a>00351 <a name="l00352"></a>00352 <span class="keywordflow">do</span><a name="l00353"></a>00353 {<a name="l00354"></a>00354 in.read(&c, 1);<a name="l00355"></a>00355 str[length++] = c;<a name="l00356"></a>00356 <span class="keywordflow">if</span> (length >= str.<a class="code" href="class_sec_block.html#f5999bffe3193e62719cc0792b0282a7">size</a>())<a name="l00357"></a>00357 str.<a class="code" href="class_sec_block.html#8dea287fba8236b0979b52beece0ec1b" title="change size only if newSize > current size. contents are preserved">Grow</a>(length + 16);<a name="l00358"></a>00358 }<a name="l00359"></a>00359 <span class="comment">// if we started with a left paren, then read until we find a right paren,</span><a name="l00360"></a>00360 <span class="comment">// otherwise read until the end of the line</span><a name="l00361"></a>00361 <span class="keywordflow">while</span> (in && ((paren && c != <span class="charliteral">')'</span>) || (!paren && c != <span class="charliteral">'\n'</span>)));<a name="l00362"></a>00362 <a name="l00363"></a>00363 str[length-1] = <span class="charliteral">'\0'</span>;<a name="l00364"></a>00364 *<span class="keyword">this</span> = PolynomialOver<T>(str, ring);<a name="l00365"></a>00365 <a name="l00366"></a>00366 <span class="keywordflow">return</span> in;<a name="l00367"></a>00367 }<a name="l00368"></a>00368 <a name="l00369"></a>00369 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00370"></a><a class="code" href="class_polynomial_over.html#2c9b1f5f4bf5a748a1e811ea8b122d3c">00370</a> std::ostream& <a class="code" href="class_polynomial_over.html#2c9b1f5f4bf5a748a1e811ea8b122d3c">PolynomialOver<T>::Output</a>(std::ostream &out, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &ring)<span class="keyword"> const</span><a name="l00371"></a>00371 <span class="keyword"></span>{<a name="l00372"></a>00372 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = <a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring);<a name="l00373"></a>00373 <span class="keywordflow">if</span> (i)<a name="l00374"></a>00374 {<a name="l00375"></a>00375 <span class="keywordtype">bool</span> firstTerm = <span class="keyword">true</span>;<a name="l00376"></a>00376 <a name="l00377"></a>00377 <span class="keywordflow">while</span> (i--)<a name="l00378"></a>00378 {<a name="l00379"></a>00379 <span class="keywordflow">if</span> (m_coefficients[i] != ring.Identity())<a name="l00380"></a>00380 {<a name="l00381"></a>00381 <span class="keywordflow">if</span> (firstTerm)<a name="l00382"></a>00382 {<a name="l00383"></a>00383 firstTerm = <span class="keyword">false</span>;<a name="l00384"></a>00384 <span class="keywordflow">if</span> (!i || !ring.Equal(m_coefficients[i], ring.MultiplicativeIdentity()))<a name="l00385"></a>00385 out << m_coefficients[i];<a name="l00386"></a>00386 }<a name="l00387"></a>00387 <span class="keywordflow">else</span><a name="l00388"></a>00388 {<a name="l00389"></a>00389 <a class="code" href="class_polynomial_over.html#2eb91afba2d1f0c11f78f5825ecd5408">CoefficientType</a> inverse = ring.Inverse(m_coefficients[i]);<a name="l00390"></a>00390 std::ostringstream pstr, nstr;<a name="l00391"></a>00391 <a name="l00392"></a>00392 pstr << m_coefficients[i];<a name="l00393"></a>00393 nstr << inverse;<a name="l00394"></a>00394 <a name="l00395"></a>00395 <span class="keywordflow">if</span> (pstr.str().size() <= nstr.str().size())<a name="l00396"></a>00396 {<a name="l00397"></a>00397 out << <span class="stringliteral">" + "</span>; <a name="l00398"></a>00398 <span class="keywordflow">if</span> (!i || !ring.Equal(m_coefficients[i], ring.MultiplicativeIdentity()))<a name="l00399"></a>00399 out << m_coefficients[i];<a name="l00400"></a>00400 }<a name="l00401"></a>00401 <span class="keywordflow">else</span><a name="l00402"></a>00402 {<a name="l00403"></a>00403 out << <span class="stringliteral">" - "</span>; <a name="l00404"></a>00404 <span class="keywordflow">if</span> (!i || !ring.Equal(inverse, ring.MultiplicativeIdentity()))<a name="l00405"></a>00405 out << inverse;<a name="l00406"></a>00406 }<a name="l00407"></a>00407 }<a name="l00408"></a>00408 <a name="l00409"></a>00409 <span class="keywordflow">switch</span> (i)<a name="l00410"></a>00410 {<a name="l00411"></a>00411 <span class="keywordflow">case</span> 0:<a name="l00412"></a>00412 <span class="keywordflow">break</span>;<a name="l00413"></a>00413 <span class="keywordflow">case</span> 1:<a name="l00414"></a>00414 out << <span class="stringliteral">"x"</span>;<a name="l00415"></a>00415 <span class="keywordflow">break</span>;<a name="l00416"></a>00416 <span class="keywordflow">default</span>:<a name="l00417"></a>00417 out << <span class="stringliteral">"x^"</span> << i;<a name="l00418"></a>00418 }<a name="l00419"></a>00419 }<a name="l00420"></a>00420 }<a name="l00421"></a>00421 }<a name="l00422"></a>00422 <span class="keywordflow">else</span><a name="l00423"></a>00423 {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -