📄 polynomi_8cpp-source.html
字号:
<a name="l00091"></a>00091 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00092"></a>00092 <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T></a>& <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T>::operator=</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T></a>& t)<a name="l00093"></a>00093 {<a name="l00094"></a>00094 <span class="keywordflow">if</span> (<span class="keyword">this</span> != &t)<a name="l00095"></a>00095 {<a name="l00096"></a>00096 m_coefficients.resize(t.<a class="code" href="class_polynomial_over.html#d669c6670fb313273a4d245eeddb82dc">m_coefficients</a>.size());<a name="l00097"></a>00097 <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0; i<m_coefficients.size(); i++)<a name="l00098"></a>00098 m_coefficients[i] = t.<a class="code" href="class_polynomial_over.html#d669c6670fb313273a4d245eeddb82dc">m_coefficients</a>[i];<a name="l00099"></a>00099 }<a name="l00100"></a>00100 <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00101"></a>00101 }<a name="l00102"></a>00102 <a name="l00103"></a>00103 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00104"></a>00104 <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T></a>& <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T>::Accumulate</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T></a>& t, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &ring)<a name="l00105"></a>00105 {<a name="l00106"></a>00106 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> count = t.<a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring);<a name="l00107"></a>00107 <a name="l00108"></a>00108 <span class="keywordflow">if</span> (count > <a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring))<a name="l00109"></a>00109 m_coefficients.resize(count, ring.Identity());<a name="l00110"></a>00110 <a name="l00111"></a>00111 <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0; i<count; i++)<a name="l00112"></a>00112 ring.Accumulate(m_coefficients[i], t.<a class="code" href="class_polynomial_over.html#e35221cf35e25478e07de2e5fcebf0f9" title="return coefficient for x^i">GetCoefficient</a>(i, ring));<a name="l00113"></a>00113 <a name="l00114"></a>00114 <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00115"></a>00115 }<a name="l00116"></a>00116 <a name="l00117"></a>00117 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00118"></a>00118 <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T></a>& <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T>::Reduce</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T></a>& t, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &ring)<a name="l00119"></a>00119 {<a name="l00120"></a>00120 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> count = t.<a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring);<a name="l00121"></a>00121 <a name="l00122"></a>00122 <span class="keywordflow">if</span> (count > <a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring))<a name="l00123"></a>00123 m_coefficients.resize(count, ring.Identity());<a name="l00124"></a>00124 <a name="l00125"></a>00125 <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0; i<count; i++)<a name="l00126"></a>00126 ring.Reduce(m_coefficients[i], t.<a class="code" href="class_polynomial_over.html#e35221cf35e25478e07de2e5fcebf0f9" title="return coefficient for x^i">GetCoefficient</a>(i, ring));<a name="l00127"></a>00127 <a name="l00128"></a>00128 <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00129"></a>00129 }<a name="l00130"></a>00130 <a name="l00131"></a>00131 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00132"></a><a class="code" href="class_polynomial_over.html#5e862bcafe11988e184db0893d086b3c">00132</a> <span class="keyword">typename</span> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T>::CoefficientType</a> <a class="code" href="class_polynomial_over.html#5e862bcafe11988e184db0893d086b3c">PolynomialOver<T>::EvaluateAt</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#2eb91afba2d1f0c11f78f5825ecd5408">CoefficientType</a> &x, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &ring)<span class="keyword"> const</span><a name="l00133"></a>00133 <span class="keyword"></span>{<a name="l00134"></a>00134 <span class="keywordtype">int</span> degree = <a class="code" href="class_polynomial_over.html#604beee6d397108b3334eaeb564b641a" title="the zero polynomial will return a degree of -1">Degree</a>(ring);<a name="l00135"></a>00135 <a name="l00136"></a>00136 <span class="keywordflow">if</span> (degree < 0)<a name="l00137"></a>00137 <span class="keywordflow">return</span> ring.Identity();<a name="l00138"></a>00138 <a name="l00139"></a>00139 <a class="code" href="class_polynomial_over.html#2eb91afba2d1f0c11f78f5825ecd5408">CoefficientType</a> result = m_coefficients[degree];<a name="l00140"></a>00140 <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j=degree-1; j>=0; j--)<a name="l00141"></a>00141 {<a name="l00142"></a>00142 result = ring.Multiply(result, x);<a name="l00143"></a>00143 ring.Accumulate(result, m_coefficients[j]);<a name="l00144"></a>00144 }<a name="l00145"></a>00145 <span class="keywordflow">return</span> result;<a name="l00146"></a>00146 }<a name="l00147"></a>00147 <a name="l00148"></a>00148 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00149"></a><a class="code" href="class_polynomial_over.html#961c5f23af4e1d59554cd8d56ae7c608">00149</a> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T></a>& <a class="code" href="class_polynomial_over.html#961c5f23af4e1d59554cd8d56ae7c608">PolynomialOver<T>::ShiftLeft</a>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> n, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &ring)<a name="l00150"></a>00150 {<a name="l00151"></a>00151 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = <a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring) + n;<a name="l00152"></a>00152 m_coefficients.resize(i, ring.Identity());<a name="l00153"></a>00153 <span class="keywordflow">while</span> (i > n)<a name="l00154"></a>00154 {<a name="l00155"></a>00155 i--;<a name="l00156"></a>00156 m_coefficients[i] = m_coefficients[i-n];<a name="l00157"></a>00157 }<a name="l00158"></a>00158 <span class="keywordflow">while</span> (i)<a name="l00159"></a>00159 {<a name="l00160"></a>00160 i--;<a name="l00161"></a>00161 m_coefficients[i] = ring.Identity();<a name="l00162"></a>00162 }<a name="l00163"></a>00163 <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00164"></a>00164 }<a name="l00165"></a>00165 <a name="l00166"></a>00166 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00167"></a><a class="code" href="class_polynomial_over.html#c24e2a39771e36b36ae3ab550e529d70">00167</a> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T></a>& <a class="code" href="class_polynomial_over.html#c24e2a39771e36b36ae3ab550e529d70">PolynomialOver<T>::ShiftRight</a>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> n, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &ring)<a name="l00168"></a>00168 {<a name="l00169"></a>00169 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> count = <a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring);<a name="l00170"></a>00170 <span class="keywordflow">if</span> (count > n)<a name="l00171"></a>00171 {<a name="l00172"></a>00172 <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0; i<count-n; i++)<a name="l00173"></a>00173 m_coefficients[i] = m_coefficients[i+n];<a name="l00174"></a>00174 m_coefficients.resize(count-n, ring.Identity());<a name="l00175"></a>00175 }<a name="l00176"></a>00176 <span class="keywordflow">else</span><a name="l00177"></a>00177 m_coefficients.resize(0, ring.Identity());<a name="l00178"></a>00178 <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00179"></a>00179 }<a name="l00180"></a>00180 <a name="l00181"></a>00181 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00182"></a><a class="code" href="class_polynomial_over.html#ac4ab97afda49a151fc9dbd8eaf9aa16">00182</a> <span class="keywordtype">void</span> <a class="code" href="class_polynomial_over.html#ac4ab97afda49a151fc9dbd8eaf9aa16" title="set the coefficient for x^i to value">PolynomialOver<T>::SetCoefficient</a>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#2eb91afba2d1f0c11f78f5825ecd5408">CoefficientType</a> &value, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &ring)<a name="l00183"></a>00183 {<a name="l00184"></a>00184 <span class="keywordflow">if</span> (i >= m_coefficients.size())<a name="l00185"></a>00185 m_coefficients.resize(i+1, ring.Identity());<a name="l00186"></a>00186 m_coefficients[i] = value;<a name="l00187"></a>00187 }<a name="l00188"></a>00188 <a name="l00189"></a>00189 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00190"></a><a class="code" href="class_polynomial_over.html#45efd76b7e9eb98a968abc90565449b3">00190</a> <span class="keywordtype">void</span> <a class="code" href="class_polynomial_over.html#45efd76b7e9eb98a968abc90565449b3">PolynomialOver<T>::Negate</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &ring)<a name="l00191"></a>00191 {<a name="l00192"></a>00192 <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> count = <a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring);<a name="l00193"></a>00193 <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0; i<count; i++)<a name="l00194"></a>00194 m_coefficients[i] = ring.Inverse(m_coefficients[i]);<a name="l00195"></a>00195 }<a name="l00196"></a>00196 <a name="l00197"></a>00197 <span class="keyword">template</span> <<span class="keyword">class</span> T><a name="l00198"></a>00198 <span class="keywordtype">void</span> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T>::swap</a>(<a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver<T></a> &t)<a name="l00199"></a>00199 {<a name="l00200"></a>00200 m_coefficients.swap(t.<a class="code" href="class_polynomial_over.html#d669c6670fb313273a4d245eeddb82dc">m_coefficients</a>);<a name="l00201"></a>00201 }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -