⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 polynomi_8cpp-source.html

📁 著名的密码库Crypto++的文档 C++语言的杰作。程序员必备。
💻 HTML
📖 第 1 页 / 共 5 页
字号:
<a name="l00091"></a>00091 <span class="keyword">template</span> &lt;<span class="keyword">class</span> T&gt;<a name="l00092"></a>00092 <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;</a>&amp;  <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;::operator=</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;</a>&amp; t)<a name="l00093"></a>00093 {<a name="l00094"></a>00094         <span class="keywordflow">if</span> (<span class="keyword">this</span> != &amp;t)<a name="l00095"></a>00095         {<a name="l00096"></a>00096                 m_coefficients.resize(t.<a class="code" href="class_polynomial_over.html#d669c6670fb313273a4d245eeddb82dc">m_coefficients</a>.size());<a name="l00097"></a>00097                 <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0; i&lt;m_coefficients.size(); i++)<a name="l00098"></a>00098                         m_coefficients[i] = t.<a class="code" href="class_polynomial_over.html#d669c6670fb313273a4d245eeddb82dc">m_coefficients</a>[i];<a name="l00099"></a>00099         }<a name="l00100"></a>00100         <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00101"></a>00101 }<a name="l00102"></a>00102 <a name="l00103"></a>00103 <span class="keyword">template</span> &lt;<span class="keyword">class</span> T&gt;<a name="l00104"></a>00104 <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;</a>&amp; <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;::Accumulate</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;</a>&amp; t, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &amp;ring)<a name="l00105"></a>00105 {<a name="l00106"></a>00106         <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> count = t.<a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring);<a name="l00107"></a>00107 <a name="l00108"></a>00108         <span class="keywordflow">if</span> (count &gt; <a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring))<a name="l00109"></a>00109                 m_coefficients.resize(count, ring.Identity());<a name="l00110"></a>00110 <a name="l00111"></a>00111         <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0; i&lt;count; i++)<a name="l00112"></a>00112                 ring.Accumulate(m_coefficients[i], t.<a class="code" href="class_polynomial_over.html#e35221cf35e25478e07de2e5fcebf0f9" title="return coefficient for x^i">GetCoefficient</a>(i, ring));<a name="l00113"></a>00113 <a name="l00114"></a>00114         <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00115"></a>00115 }<a name="l00116"></a>00116 <a name="l00117"></a>00117 <span class="keyword">template</span> &lt;<span class="keyword">class</span> T&gt;<a name="l00118"></a>00118 <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;</a>&amp; <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;::Reduce</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;</a>&amp; t, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &amp;ring)<a name="l00119"></a>00119 {<a name="l00120"></a>00120         <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> count = t.<a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring);<a name="l00121"></a>00121 <a name="l00122"></a>00122         <span class="keywordflow">if</span> (count &gt; <a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring))<a name="l00123"></a>00123                 m_coefficients.resize(count, ring.Identity());<a name="l00124"></a>00124 <a name="l00125"></a>00125         <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0; i&lt;count; i++)<a name="l00126"></a>00126                 ring.Reduce(m_coefficients[i], t.<a class="code" href="class_polynomial_over.html#e35221cf35e25478e07de2e5fcebf0f9" title="return coefficient for x^i">GetCoefficient</a>(i, ring));<a name="l00127"></a>00127 <a name="l00128"></a>00128         <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00129"></a>00129 }<a name="l00130"></a>00130 <a name="l00131"></a>00131 <span class="keyword">template</span> &lt;<span class="keyword">class</span> T&gt;<a name="l00132"></a><a class="code" href="class_polynomial_over.html#5e862bcafe11988e184db0893d086b3c">00132</a> <span class="keyword">typename</span> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;::CoefficientType</a> <a class="code" href="class_polynomial_over.html#5e862bcafe11988e184db0893d086b3c">PolynomialOver&lt;T&gt;::EvaluateAt</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#2eb91afba2d1f0c11f78f5825ecd5408">CoefficientType</a> &amp;x, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &amp;ring)<span class="keyword"> const</span><a name="l00133"></a>00133 <span class="keyword"></span>{<a name="l00134"></a>00134         <span class="keywordtype">int</span> degree = <a class="code" href="class_polynomial_over.html#604beee6d397108b3334eaeb564b641a" title="the zero polynomial will return a degree of -1">Degree</a>(ring);<a name="l00135"></a>00135 <a name="l00136"></a>00136         <span class="keywordflow">if</span> (degree &lt; 0)<a name="l00137"></a>00137                 <span class="keywordflow">return</span> ring.Identity();<a name="l00138"></a>00138 <a name="l00139"></a>00139         <a class="code" href="class_polynomial_over.html#2eb91afba2d1f0c11f78f5825ecd5408">CoefficientType</a> result = m_coefficients[degree];<a name="l00140"></a>00140         <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j=degree-1; j&gt;=0; j--)<a name="l00141"></a>00141         {<a name="l00142"></a>00142                 result = ring.Multiply(result, x);<a name="l00143"></a>00143                 ring.Accumulate(result, m_coefficients[j]);<a name="l00144"></a>00144         }<a name="l00145"></a>00145         <span class="keywordflow">return</span> result;<a name="l00146"></a>00146 }<a name="l00147"></a>00147 <a name="l00148"></a>00148 <span class="keyword">template</span> &lt;<span class="keyword">class</span> T&gt;<a name="l00149"></a><a class="code" href="class_polynomial_over.html#961c5f23af4e1d59554cd8d56ae7c608">00149</a> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;</a>&amp; <a class="code" href="class_polynomial_over.html#961c5f23af4e1d59554cd8d56ae7c608">PolynomialOver&lt;T&gt;::ShiftLeft</a>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> n, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &amp;ring)<a name="l00150"></a>00150 {<a name="l00151"></a>00151         <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = <a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring) + n;<a name="l00152"></a>00152         m_coefficients.resize(i, ring.Identity());<a name="l00153"></a>00153         <span class="keywordflow">while</span> (i &gt; n)<a name="l00154"></a>00154         {<a name="l00155"></a>00155                 i--;<a name="l00156"></a>00156                 m_coefficients[i] = m_coefficients[i-n];<a name="l00157"></a>00157         }<a name="l00158"></a>00158         <span class="keywordflow">while</span> (i)<a name="l00159"></a>00159         {<a name="l00160"></a>00160                 i--;<a name="l00161"></a>00161                 m_coefficients[i] = ring.Identity();<a name="l00162"></a>00162         }<a name="l00163"></a>00163         <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00164"></a>00164 }<a name="l00165"></a>00165 <a name="l00166"></a>00166 <span class="keyword">template</span> &lt;<span class="keyword">class</span> T&gt;<a name="l00167"></a><a class="code" href="class_polynomial_over.html#c24e2a39771e36b36ae3ab550e529d70">00167</a> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;</a>&amp; <a class="code" href="class_polynomial_over.html#c24e2a39771e36b36ae3ab550e529d70">PolynomialOver&lt;T&gt;::ShiftRight</a>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> n, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &amp;ring)<a name="l00168"></a>00168 {<a name="l00169"></a>00169         <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> count = <a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring);<a name="l00170"></a>00170         <span class="keywordflow">if</span> (count &gt; n)<a name="l00171"></a>00171         {<a name="l00172"></a>00172                 <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0; i&lt;count-n; i++)<a name="l00173"></a>00173                         m_coefficients[i] = m_coefficients[i+n];<a name="l00174"></a>00174                 m_coefficients.resize(count-n, ring.Identity());<a name="l00175"></a>00175         }<a name="l00176"></a>00176         <span class="keywordflow">else</span><a name="l00177"></a>00177                 m_coefficients.resize(0, ring.Identity());<a name="l00178"></a>00178         <span class="keywordflow">return</span> *<span class="keyword">this</span>;<a name="l00179"></a>00179 }<a name="l00180"></a>00180 <a name="l00181"></a>00181 <span class="keyword">template</span> &lt;<span class="keyword">class</span> T&gt;<a name="l00182"></a><a class="code" href="class_polynomial_over.html#ac4ab97afda49a151fc9dbd8eaf9aa16">00182</a> <span class="keywordtype">void</span> <a class="code" href="class_polynomial_over.html#ac4ab97afda49a151fc9dbd8eaf9aa16" title="set the coefficient for x^i to value">PolynomialOver&lt;T&gt;::SetCoefficient</a>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#2eb91afba2d1f0c11f78f5825ecd5408">CoefficientType</a> &amp;value, <span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &amp;ring)<a name="l00183"></a>00183 {<a name="l00184"></a>00184         <span class="keywordflow">if</span> (i &gt;= m_coefficients.size())<a name="l00185"></a>00185                 m_coefficients.resize(i+1, ring.Identity());<a name="l00186"></a>00186         m_coefficients[i] = value;<a name="l00187"></a>00187 }<a name="l00188"></a>00188 <a name="l00189"></a>00189 <span class="keyword">template</span> &lt;<span class="keyword">class</span> T&gt;<a name="l00190"></a><a class="code" href="class_polynomial_over.html#45efd76b7e9eb98a968abc90565449b3">00190</a> <span class="keywordtype">void</span> <a class="code" href="class_polynomial_over.html#45efd76b7e9eb98a968abc90565449b3">PolynomialOver&lt;T&gt;::Negate</a>(<span class="keyword">const</span> <a class="code" href="class_polynomial_over.html#f87a6be38193e61c7aecb8c96510583e">Ring</a> &amp;ring)<a name="l00191"></a>00191 {<a name="l00192"></a>00192         <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> count = <a class="code" href="class_polynomial_over.html#65c6004a42608f31008ff066f2eba3e2">CoefficientCount</a>(ring);<a name="l00193"></a>00193         <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0; i&lt;count; i++)<a name="l00194"></a>00194                 m_coefficients[i] = ring.Inverse(m_coefficients[i]);<a name="l00195"></a>00195 }<a name="l00196"></a>00196 <a name="l00197"></a>00197 <span class="keyword">template</span> &lt;<span class="keyword">class</span> T&gt;<a name="l00198"></a>00198 <span class="keywordtype">void</span> <a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;::swap</a>(<a class="code" href="class_polynomial_over.html" title="represents single-variable polynomials over arbitrary rings">PolynomialOver&lt;T&gt;</a> &amp;t)<a name="l00199"></a>00199 {<a name="l00200"></a>00200         m_coefficients.swap(t.<a class="code" href="class_polynomial_over.html#d669c6670fb313273a4d245eeddb82dc">m_coefficients</a>);<a name="l00201"></a>00201 }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -