📄 sshpubk.c
字号:
/* * Generic SSH public-key handling operations. In particular, * reading of SSH public-key files, and also the generic `sign' * operation for ssh2 (which checks the type of the key and * dispatches to the appropriate key-type specific function). */#include <stdio.h>#include <stdlib.h>#include <assert.h>#include "putty.h"#include "ssh.h"#include "misc.h"#define PUT_32BIT(cp, value) do { \ (cp)[3] = (value); \ (cp)[2] = (value) >> 8; \ (cp)[1] = (value) >> 16; \ (cp)[0] = (value) >> 24; } while (0)#define GET_32BIT(cp) \ (((unsigned long)(unsigned char)(cp)[0] << 24) | \ ((unsigned long)(unsigned char)(cp)[1] << 16) | \ ((unsigned long)(unsigned char)(cp)[2] << 8) | \ ((unsigned long)(unsigned char)(cp)[3]))#define rsa_signature "SSH PRIVATE KEY FILE FORMAT 1.1\n"#define BASE64_TOINT(x) ( (x)-'A'<26 ? (x)-'A'+0 :\ (x)-'a'<26 ? (x)-'a'+26 :\ (x)-'0'<10 ? (x)-'0'+52 :\ (x)=='+' ? 62 : \ (x)=='/' ? 63 : 0 )static int loadrsakey_main(FILE * fp, struct RSAKey *key, int pub_only, char **commentptr, char *passphrase, const char **error){#define BUFSIZE 16384 unsigned char *buf = snewn(BUFSIZE, unsigned char); unsigned char keybuf[16]; int len; int i, j, ciphertype; int ret = 0; struct MD5Context md5c; char *comment; *error = NULL; /* Slurp the whole file (minus the header) into a buffer. */ len = fread(buf, 1, BUFSIZE, fp); fclose(fp); if (len < 0 || len == sizeof(buf)) { *error = "error reading file"; goto end; /* file too big or not read */ } i = 0; *error = "file format error"; /* * A zero byte. (The signature includes a terminating NUL.) */ if (len - i < 1 || buf[i] != 0) goto end; i++; /* One byte giving encryption type, and one reserved uint32. */ if (len - i < 1) goto end; ciphertype = buf[i]; if (ciphertype != 0 && ciphertype != SSH_CIPHER_3DES) goto end; i++; if (len - i < 4) goto end; /* reserved field not present */ if (buf[i] != 0 || buf[i + 1] != 0 || buf[i + 2] != 0 || buf[i + 3] != 0) goto end; /* reserved field nonzero, panic! */ i += 4; /* Now the serious stuff. An ordinary SSH 1 public key. */ i += makekey(buf + i, len, key, NULL, 1); if (i < 0) goto end; /* overran */ if (pub_only) { ret = 1; goto end; } /* Next, the comment field. */ j = GET_32BIT(buf + i); i += 4; if (len - i < j) goto end; comment = snewn(j + 1, char); if (comment) { memcpy(comment, buf + i, j); comment[j] = '\0'; } i += j; if (commentptr) *commentptr = comment; if (key) key->comment = comment; if (!key) { ret = ciphertype != 0; *error = NULL; goto end; } /* * Decrypt remainder of buffer. */ if (ciphertype) { MD5Init(&md5c); MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase)); MD5Final(keybuf, &md5c); des3_decrypt_pubkey(keybuf, buf + i, (len - i + 7) & ~7); memset(keybuf, 0, sizeof(keybuf)); /* burn the evidence */ } /* * We are now in the secret part of the key. The first four * bytes should be of the form a, b, a, b. */ if (len - i < 4) goto end; if (buf[i] != buf[i + 2] || buf[i + 1] != buf[i + 3]) { *error = "wrong passphrase"; ret = -1; goto end; } i += 4; /* * After that, we have one further bignum which is our * decryption exponent, and then the three auxiliary values * (iqmp, q, p). */ j = makeprivate(buf + i, len - i, key); if (j < 0) goto end; i += j; j = ssh1_read_bignum(buf + i, len - i, &key->iqmp); if (j < 0) goto end; i += j; j = ssh1_read_bignum(buf + i, len - i, &key->q); if (j < 0) goto end; i += j; j = ssh1_read_bignum(buf + i, len - i, &key->p); if (j < 0) goto end; i += j; if (!rsa_verify(key)) { *error = "rsa_verify failed"; freersakey(key); ret = 0; } else ret = 1; end: memset(buf, 0, sizeof(buf)); /* burn the evidence */ sfree(buf); return ret;#undef BUFSIZE}int loadrsakey(const Filename *filename, struct RSAKey *key, char *passphrase, const char **errorstr){ FILE *fp; char buf[64]; int ret = 0; const char *error = NULL; fp = f_open(*filename, "rb"); if (!fp) { error = "can't open file"; goto end; } /* * Read the first line of the file and see if it's a v1 private * key file. */ if (fgets(buf, sizeof(buf), fp) && !strcmp(buf, rsa_signature)) { /* * This routine will take care of calling fclose() for us. */ ret = loadrsakey_main(fp, key, FALSE, NULL, passphrase, &error); fp = NULL; goto end; } /* * Otherwise, we have nothing. Return empty-handed. */ error = "not an SSH-1 RSA file"; end: if (fp) fclose(fp); if ((ret != 1) && errorstr) *errorstr = error; return ret;}/* * See whether an RSA key is encrypted. Return its comment field as * well. */int rsakey_encrypted(const Filename *filename, char **comment){ FILE *fp; char buf[64]; fp = f_open(*filename, "rb"); if (!fp) return 0; /* doesn't even exist */ /* * Read the first line of the file and see if it's a v1 private * key file. */ if (fgets(buf, sizeof(buf), fp) && !strcmp(buf, rsa_signature)) { const char *dummy; /* * This routine will take care of calling fclose() for us. */ return loadrsakey_main(fp, NULL, FALSE, comment, NULL, &dummy); } fclose(fp); return 0; /* wasn't the right kind of file */}/* * Return a malloc'ed chunk of memory containing the public blob of * an RSA key, as given in the agent protocol (modulus bits, * exponent, modulus). */int rsakey_pubblob(const Filename *filename, void **blob, int *bloblen, const char **errorstr){ FILE *fp; char buf[64]; struct RSAKey key; int ret; const char *error = NULL; /* Default return if we fail. */ *blob = NULL; *bloblen = 0; ret = 0; fp = f_open(*filename, "rb"); if (!fp) { error = "can't open file"; goto end; } /* * Read the first line of the file and see if it's a v1 private * key file. */ if (fgets(buf, sizeof(buf), fp) && !strcmp(buf, rsa_signature)) { memset(&key, 0, sizeof(key)); if (loadrsakey_main(fp, &key, TRUE, NULL, NULL, &error)) { *blob = rsa_public_blob(&key, bloblen); freersakey(&key); ret = 1; fp = NULL; } } else { error = "not an SSH-1 RSA file"; } end: if (fp) fclose(fp); if ((ret != 1) && errorstr) *errorstr = error; return ret;}/* * Save an RSA key file. Return nonzero on success. */int saversakey(const Filename *filename, struct RSAKey *key, char *passphrase){#define BUFSIZE 16384 unsigned char *buf = snewn(BUFSIZE, unsigned char); unsigned char keybuf[16]; struct MD5Context md5c; unsigned char *p, *estart; FILE *fp; /* * Write the initial signature. */ p = buf; memcpy(p, rsa_signature, sizeof(rsa_signature)); p += sizeof(rsa_signature); /* * One byte giving encryption type, and one reserved (zero) * uint32. */ *p++ = (passphrase ? SSH_CIPHER_3DES : 0); PUT_32BIT(p, 0); p += 4; /* * An ordinary SSH 1 public key consists of: a uint32 * containing the bit count, then two bignums containing the * modulus and exponent respectively. */ PUT_32BIT(p, bignum_bitcount(key->modulus)); p += 4; p += ssh1_write_bignum(p, key->modulus); p += ssh1_write_bignum(p, key->exponent); /* * A string containing the comment field. */ if (key->comment) { PUT_32BIT(p, strlen(key->comment)); p += 4; memcpy(p, key->comment, strlen(key->comment)); p += strlen(key->comment); } else { PUT_32BIT(p, 0); p += 4; } /* * The encrypted portion starts here. */ estart = p; /* * Two bytes, then the same two bytes repeated. */ *p++ = random_byte(); *p++ = random_byte(); p[0] = p[-2]; p[1] = p[-1]; p += 2; /* * Four more bignums: the decryption exponent, then iqmp, then * q, then p. */ p += ssh1_write_bignum(p, key->private_exponent); p += ssh1_write_bignum(p, key->iqmp); p += ssh1_write_bignum(p, key->q); p += ssh1_write_bignum(p, key->p); /* * Now write zeros until the encrypted portion is a multiple of * 8 bytes. */ while ((p - estart) % 8) *p++ = '\0'; /* * Now encrypt the encrypted portion. */ if (passphrase) { MD5Init(&md5c); MD5Update(&md5c, (unsigned char *)passphrase, strlen(passphrase)); MD5Final(keybuf, &md5c); des3_encrypt_pubkey(keybuf, estart, p - estart); memset(keybuf, 0, sizeof(keybuf)); /* burn the evidence */ } /* * Done. Write the result to the file. */ fp = f_open(*filename, "wb"); if (fp) { int ret = (fwrite(buf, 1, p - buf, fp) == (size_t) (p - buf)); ret = ret && (fclose(fp) == 0); sfree(buf); return ret; } else { sfree(buf); return 0; }#undef BUFSIZE}/* ---------------------------------------------------------------------- * SSH2 private key load/store functions. *//* * PuTTY's own format for SSH2 keys is as follows: * * The file is text. Lines are terminated by CRLF, although CR-only * and LF-only are tolerated on input. * * The first line says "PuTTY-User-Key-File-2: " plus the name of the * algorithm ("ssh-dss", "ssh-rsa" etc). * * The next line says "Encryption: " plus an encryption type. * Currently the only supported encryption types are "aes256-cbc" * and "none". * * The next line says "Comment: " plus the comment string. * * Next there is a line saying "Public-Lines: " plus a number N. * The following N lines contain a base64 encoding of the public * part of the key. This is encoded as the standard SSH2 public key * blob (with no initial length): so for RSA, for example, it will * read * * string "ssh-rsa" * mpint exponent * mpint modulus * * Next, there is a line saying "Private-Lines: " plus a number N, * and then N lines containing the (potentially encrypted) private * part of the key. For the key type "ssh-rsa", this will be * composed of * * mpint private_exponent * mpint p (the larger of the two primes) * mpint q (the smaller prime) * mpint iqmp (the inverse of q modulo p) * data padding (to reach a multiple of the cipher block size) * * And for "ssh-dss", it will be composed of * * mpint x (the private key parameter) * [ string hash 20-byte hash of mpints p || q || g only in old format ] * * Finally, there is a line saying "Private-MAC: " plus a hex * representation of a HMAC-SHA-1 of: * * string name of algorithm ("ssh-dss", "ssh-rsa") * string encryption type * string comment * string public-blob * string private-plaintext (the plaintext version of the * private part, including the final * padding) * * The key to the MAC is itself a SHA-1 hash of: * * data "putty-private-key-file-mac-key" * data passphrase * * (An empty passphrase is used for unencrypted keys.) * * If the key is encrypted, the encryption key is derived from the * passphrase by means of a succession of SHA-1 hashes. Each hash * is the hash of: * * uint32 sequence-number * data passphrase * * where the sequence-number increases from zero. As many of these * hashes are used as necessary. * * For backwards compatibility with snapshots between 0.51 and * 0.52, we also support the older key file format, which begins * with "PuTTY-User-Key-File-1" (version number differs). In this * format the Private-MAC: field only covers the private-plaintext * field and nothing else (and without the 4-byte string length on * the front too). Moreover, for RSA keys the Private-MAC: field * can be replaced with a Private-Hash: field which is a plain * SHA-1 hash instead of an HMAC. This is not allowable in DSA * keys. (Yes, the old format was a mess. Guess why it changed :-) */static int read_header(FILE * fp, char *header){ int len = 39; int c; while (len > 0) { c = fgetc(fp); if (c == '\n' || c == '\r' || c == EOF) return 0; /* failure */ if (c == ':') { c = fgetc(fp); if (c != ' ') return 0; *header = '\0'; return 1; /* success! */ } if (len == 0) return 0; /* failure */ *header++ = c; len--; } return 0; /* failure */}static char *read_body(FILE * fp){ char *text; int len; int size; int c; size = 128; text = snewn(size, char); len = 0; text[len] = '\0'; while (1) { c = fgetc(fp); if (c == '\r' || c == '\n') { c = fgetc(fp); if (c != '\r' && c != '\n' && c != EOF) ungetc(c, fp); return text; } if (c == EOF) { sfree(text); return NULL; } if (len + 1 > size) { size += 128; text = sresize(text, size, char); } text[len++] = c; text[len] = '\0'; }}int base64_decode_atom(char *atom, unsigned char *out){ int vals[4]; int i, v, len; unsigned word; char c; for (i = 0; i < 4; i++) { c = atom[i]; if (c >= 'A' && c <= 'Z') v = c - 'A'; else if (c >= 'a' && c <= 'z') v = c - 'a' + 26; else if (c >= '0' && c <= '9') v = c - '0' + 52; else if (c == '+') v = 62; else if (c == '/') v = 63; else if (c == '=') v = -1; else return 0; /* invalid atom */ vals[i] = v; } if (vals[0] == -1 || vals[1] == -1) return 0; if (vals[2] == -1 && vals[3] != -1) return 0; if (vals[3] != -1) len = 3; else if (vals[2] != -1) len = 2; else len = 1; word = ((vals[0] << 18) | (vals[1] << 12) | ((vals[2] & 0x3F) << 6) | (vals[3] & 0x3F)); out[0] = (word >> 16) & 0xFF; if (len > 1) out[1] = (word >> 8) & 0xFF; if (len > 2) out[2] = word & 0xFF; return len;}static unsigned char *read_blob(FILE * fp, int nlines, int *bloblen){ unsigned char *blob; char *line; int linelen, len; int i, j, k; /* We expect at most 64 base64 characters, ie 48 real bytes, per line. */ blob = snewn(48 * nlines, unsigned char); len = 0; for (i = 0; i < nlines; i++) { line = read_body(fp); if (!line) { sfree(blob); return NULL; } linelen = strlen(line); if (linelen % 4 != 0 || linelen > 64) { sfree(blob); sfree(line); return NULL; } for (j = 0; j < linelen; j += 4) { k = base64_decode_atom(line + j, blob + len); if (!k) { sfree(line); sfree(blob); return NULL; } len += k; } sfree(line); } *bloblen = len; return blob;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -