📄 sshzlib.c
字号:
{6, 2, 9, 12}, {7, 2, 13, 16}, {8, 3, 17, 24}, {9, 3, 25, 32}, {10, 4, 33, 48}, {11, 4, 49, 64}, {12, 5, 65, 96}, {13, 5, 97, 128}, {14, 6, 129, 192}, {15, 6, 193, 256}, {16, 7, 257, 384}, {17, 7, 385, 512}, {18, 8, 513, 768}, {19, 8, 769, 1024}, {20, 9, 1025, 1536}, {21, 9, 1537, 2048}, {22, 10, 2049, 3072}, {23, 10, 3073, 4096}, {24, 11, 4097, 6144}, {25, 11, 6145, 8192}, {26, 12, 8193, 12288}, {27, 12, 12289, 16384}, {28, 13, 16385, 24576}, {29, 13, 24577, 32768},};static void zlib_literal(struct LZ77Context *ectx, unsigned char c){ struct Outbuf *out = (struct Outbuf *) ectx->userdata; if (out->comp_disabled) { /* * We're in an uncompressed block, so just output the byte. */ outbits(out, c, 8); return; } if (c <= 143) { /* 0 through 143 are 8 bits long starting at 00110000. */ outbits(out, mirrorbytes[0x30 + c], 8); } else { /* 144 through 255 are 9 bits long starting at 110010000. */ outbits(out, 1 + 2 * mirrorbytes[0x90 - 144 + c], 9); }}static void zlib_match(struct LZ77Context *ectx, int distance, int len){ const coderecord *d, *l; int i, j, k; struct Outbuf *out = (struct Outbuf *) ectx->userdata; assert(!out->comp_disabled); while (len > 0) { int thislen; /* * We can transmit matches of lengths 3 through 258 * inclusive. So if len exceeds 258, we must transmit in * several steps, with 258 or less in each step. * * Specifically: if len >= 261, we can transmit 258 and be * sure of having at least 3 left for the next step. And if * len <= 258, we can just transmit len. But if len == 259 * or 260, we must transmit len-3. */ thislen = (len > 260 ? 258 : len <= 258 ? len : len - 3); len -= thislen; /* * Binary-search to find which length code we're * transmitting. */ i = -1; j = sizeof(lencodes) / sizeof(*lencodes); while (1) { assert(j - i >= 2); k = (j + i) / 2; if (thislen < lencodes[k].min) j = k; else if (thislen > lencodes[k].max) i = k; else { l = &lencodes[k]; break; /* found it! */ } } /* * Transmit the length code. 256-279 are seven bits * starting at 0000000; 280-287 are eight bits starting at * 11000000. */ if (l->code <= 279) { outbits(out, mirrorbytes[(l->code - 256) * 2], 7); } else { outbits(out, mirrorbytes[0xc0 - 280 + l->code], 8); } /* * Transmit the extra bits. */ if (l->extrabits) outbits(out, thislen - l->min, l->extrabits); /* * Binary-search to find which distance code we're * transmitting. */ i = -1; j = sizeof(distcodes) / sizeof(*distcodes); while (1) { assert(j - i >= 2); k = (j + i) / 2; if (distance < distcodes[k].min) j = k; else if (distance > distcodes[k].max) i = k; else { d = &distcodes[k]; break; /* found it! */ } } /* * Transmit the distance code. Five bits starting at 00000. */ outbits(out, mirrorbytes[d->code * 8], 5); /* * Transmit the extra bits. */ if (d->extrabits) outbits(out, distance - d->min, d->extrabits); }}void *zlib_compress_init(void){ struct Outbuf *out; struct LZ77Context *ectx = snew(struct LZ77Context); lz77_init(ectx); ectx->literal = zlib_literal; ectx->match = zlib_match; out = snew(struct Outbuf); out->outbits = out->noutbits = 0; out->firstblock = 1; out->comp_disabled = FALSE; ectx->userdata = out; return ectx;}void zlib_compress_cleanup(void *handle){ struct LZ77Context *ectx = (struct LZ77Context *)handle; sfree(ectx->userdata); sfree(ectx->ictx); sfree(ectx);}/* * Turn off actual LZ77 analysis for one block, to facilitate * construction of a precise-length IGNORE packet. Returns the * length adjustment (which is only valid for packets < 65536 * bytes, but that seems reasonable enough). */static int zlib_disable_compression(void *handle){ struct LZ77Context *ectx = (struct LZ77Context *)handle; struct Outbuf *out = (struct Outbuf *) ectx->userdata; int n; out->comp_disabled = TRUE; n = 0; /* * If this is the first block, we will start by outputting two * header bytes, and then three bits to begin an uncompressed * block. This will cost three bytes (because we will start on * a byte boundary, this is certain). */ if (out->firstblock) { n = 3; } else { /* * Otherwise, we will output seven bits to close the * previous static block, and _then_ three bits to begin an * uncompressed block, and then flush the current byte. * This may cost two bytes or three, depending on noutbits. */ n += (out->noutbits + 10) / 8; } /* * Now we output four bytes for the length / ~length pair in * the uncompressed block. */ n += 4; return n;}int zlib_compress_block(void *handle, unsigned char *block, int len, unsigned char **outblock, int *outlen){ struct LZ77Context *ectx = (struct LZ77Context *)handle; struct Outbuf *out = (struct Outbuf *) ectx->userdata; int in_block; out->outbuf = NULL; out->outlen = out->outsize = 0; /* * If this is the first block, output the Zlib (RFC1950) header * bytes 78 9C. (Deflate compression, 32K window size, default * algorithm.) */ if (out->firstblock) { outbits(out, 0x9C78, 16); out->firstblock = 0; in_block = FALSE; } else in_block = TRUE; if (out->comp_disabled) { if (in_block) outbits(out, 0, 7); /* close static block */ while (len > 0) { int blen = (len < 65535 ? len : 65535); /* * Start a Deflate (RFC1951) uncompressed block. We * transmit a zero bit (BFINAL=0), followed by a zero * bit and a one bit (BTYPE=00). Of course these are in * the wrong order (00 0). */ outbits(out, 0, 3); /* * Output zero bits to align to a byte boundary. */ if (out->noutbits) outbits(out, 0, 8 - out->noutbits); /* * Output the block length, and then its one's * complement. They're little-endian, so all we need to * do is pass them straight to outbits() with bit count * 16. */ outbits(out, blen, 16); outbits(out, blen ^ 0xFFFF, 16); /* * Do the `compression': we need to pass the data to * lz77_compress so that it will be taken into account * for subsequent (distance,length) pairs. But * lz77_compress is passed FALSE, which means it won't * actually find (or even look for) any matches; so * every character will be passed straight to * zlib_literal which will spot out->comp_disabled and * emit in the uncompressed format. */ lz77_compress(ectx, block, blen, FALSE); len -= blen; block += blen; } outbits(out, 2, 3); /* open new block */ } else { if (!in_block) { /* * Start a Deflate (RFC1951) fixed-trees block. We * transmit a zero bit (BFINAL=0), followed by a zero * bit and a one bit (BTYPE=01). Of course these are in * the wrong order (01 0). */ outbits(out, 2, 3); } /* * Do the compression. */ lz77_compress(ectx, block, len, TRUE); /* * End the block (by transmitting code 256, which is * 0000000 in fixed-tree mode), and transmit some empty * blocks to ensure we have emitted the byte containing the * last piece of genuine data. There are three ways we can * do this: * * - Minimal flush. Output end-of-block and then open a * new static block. This takes 9 bits, which is * guaranteed to flush out the last genuine code in the * closed block; but allegedly zlib can't handle it. * * - Zlib partial flush. Output EOB, open and close an * empty static block, and _then_ open the new block. * This is the best zlib can handle. * * - Zlib sync flush. Output EOB, then an empty * _uncompressed_ block (000, then sync to byte * boundary, then send bytes 00 00 FF FF). Then open the * new block. * * For the moment, we will use Zlib partial flush. */ outbits(out, 0, 7); /* close block */ outbits(out, 2, 3 + 7); /* empty static block */ outbits(out, 2, 3); /* open new block */ } out->comp_disabled = FALSE; *outblock = out->outbuf; *outlen = out->outlen; return 1;}/* ---------------------------------------------------------------------- * Zlib decompression. Of course, even though our compressor always * uses static trees, our _decompressor_ has to be capable of * handling dynamic trees if it sees them. *//* * The way we work the Huffman decode is to have a table lookup on * the first N bits of the input stream (in the order they arrive, * of course, i.e. the first bit of the Huffman code is in bit 0). * Each table entry lists the number of bits to consume, plus * either an output code or a pointer to a secondary table. */struct zlib_table;struct zlib_tableentry;struct zlib_tableentry { unsigned char nbits; short code; struct zlib_table *nexttable;};struct zlib_table { int mask; /* mask applied to input bit stream */ struct zlib_tableentry *table;};#define MAXCODELEN 16#define MAXSYMS 288/* * Build a single-level decode table for elements * [minlength,maxlength) of the provided code/length tables, and * recurse to build subtables. */static struct zlib_table *zlib_mkonetab(int *codes, unsigned char *lengths, int nsyms, int pfx, int pfxbits, int bits){ struct zlib_table *tab = snew(struct zlib_table); int pfxmask = (1 << pfxbits) - 1; int nbits, i, j, code; tab->table = snewn(1 << bits, struct zlib_tableentry); tab->mask = (1 << bits) - 1; for (code = 0; code <= tab->mask; code++) { tab->table[code].code = -1; tab->table[code].nbits = 0; tab->table[code].nexttable = NULL; } for (i = 0; i < nsyms; i++) { if (lengths[i] <= pfxbits || (codes[i] & pfxmask) != pfx) continue; code = (codes[i] >> pfxbits) & tab->mask; for (j = code; j <= tab->mask; j += 1 << (lengths[i] - pfxbits)) { tab->table[j].code = i; nbits = lengths[i] - pfxbits; if (tab->table[j].nbits < nbits) tab->table[j].nbits = nbits; } } for (code = 0; code <= tab->mask; code++) { if (tab->table[code].nbits <= bits) continue; /* Generate a subtable. */ tab->table[code].code = -1; nbits = tab->table[code].nbits - bits; if (nbits > 7) nbits = 7; tab->table[code].nbits = bits; tab->table[code].nexttable = zlib_mkonetab(codes, lengths, nsyms, pfx | (code << pfxbits), pfxbits + bits, nbits); } return tab;}/* * Build a decode table, given a set of Huffman tree lengths. */static struct zlib_table *zlib_mktable(unsigned char *lengths, int nlengths){ int count[MAXCODELEN], startcode[MAXCODELEN], codes[MAXSYMS]; int code, maxlen; int i, j; /* Count the codes of each length. */ maxlen = 0; for (i = 1; i < MAXCODELEN; i++) count[i] = 0; for (i = 0; i < nlengths; i++) { count[lengths[i]]++; if (maxlen < lengths[i]) maxlen = lengths[i]; } /* Determine the starting code for each length block. */ code = 0; for (i = 1; i < MAXCODELEN; i++) { startcode[i] = code; code += count[i]; code <<= 1; } /* Determine the code for each symbol. Mirrored, of course. */ for (i = 0; i < nlengths; i++) { code = startcode[lengths[i]]++; codes[i] = 0; for (j = 0; j < lengths[i]; j++) { codes[i] = (codes[i] << 1) | (code & 1); code >>= 1; } } /* * Now we have the complete list of Huffman codes. Build a * table. */ return zlib_mkonetab(codes, lengths, nlengths, 0, 0, maxlen < 9 ? maxlen : 9);}static int zlib_freetable(struct zlib_table **ztab){ struct zlib_table *tab; int code; if (ztab == NULL) return -1; if (*ztab == NULL)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -