📄 sshbn.c
字号:
bn[i]--;}Bignum bignum_from_bytes(const unsigned char *data, int nbytes){ Bignum result; int w, i; w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */ result = newbn(w); for (i = 1; i <= w; i++) result[i] = 0; for (i = nbytes; i--;) { unsigned char byte = *data++; result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS); } while (result[0] > 1 && result[result[0]] == 0) result[0]--; return result;}/* * Read an ssh1-format bignum from a data buffer. Return the number * of bytes consumed, or -1 if there wasn't enough data. */int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result){ const unsigned char *p = data; int i; int w, b; if (len < 2) return -1; w = 0; for (i = 0; i < 2; i++) w = (w << 8) + *p++; b = (w + 7) / 8; /* bits -> bytes */ if (len < b+2) return -1; if (!result) /* just return length */ return b + 2; *result = bignum_from_bytes(p, b); return p + b - data;}/* * Return the bit count of a bignum, for ssh1 encoding. */int bignum_bitcount(Bignum bn){ int bitcount = bn[0] * BIGNUM_INT_BITS - 1; while (bitcount >= 0 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--; return bitcount + 1;}/* * Return the byte length of a bignum when ssh1 encoded. */int ssh1_bignum_length(Bignum bn){ return 2 + (bignum_bitcount(bn) + 7) / 8;}/* * Return the byte length of a bignum when ssh2 encoded. */int ssh2_bignum_length(Bignum bn){ return 4 + (bignum_bitcount(bn) + 8) / 8;}/* * Return a byte from a bignum; 0 is least significant, etc. */int bignum_byte(Bignum bn, int i){ if (i >= BIGNUM_INT_BYTES * bn[0]) return 0; /* beyond the end */ else return (bn[i / BIGNUM_INT_BYTES + 1] >> ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;}/* * Return a bit from a bignum; 0 is least significant, etc. */int bignum_bit(Bignum bn, int i){ if (i >= BIGNUM_INT_BITS * bn[0]) return 0; /* beyond the end */ else return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;}/* * Set a bit in a bignum; 0 is least significant, etc. */void bignum_set_bit(Bignum bn, int bitnum, int value){ if (bitnum >= BIGNUM_INT_BITS * bn[0]) abort(); /* beyond the end */ else { int v = bitnum / BIGNUM_INT_BITS + 1; int mask = 1 << (bitnum % BIGNUM_INT_BITS); if (value) bn[v] |= mask; else bn[v] &= ~mask; }}/* * Write a ssh1-format bignum into a buffer. It is assumed the * buffer is big enough. Returns the number of bytes used. */int ssh1_write_bignum(void *data, Bignum bn){ unsigned char *p = data; int len = ssh1_bignum_length(bn); int i; int bitc = bignum_bitcount(bn); *p++ = (bitc >> 8) & 0xFF; *p++ = (bitc) & 0xFF; for (i = len - 2; i--;) *p++ = bignum_byte(bn, i); return len;}/* * Compare two bignums. Returns like strcmp. */int bignum_cmp(Bignum a, Bignum b){ int amax = a[0], bmax = b[0]; int i = (amax > bmax ? amax : bmax); while (i) { BignumInt aval = (i > amax ? 0 : a[i]); BignumInt bval = (i > bmax ? 0 : b[i]); if (aval < bval) return -1; if (aval > bval) return +1; i--; } return 0;}/* * Right-shift one bignum to form another. */Bignum bignum_rshift(Bignum a, int shift){ Bignum ret; int i, shiftw, shiftb, shiftbb, bits; BignumInt ai, ai1; bits = bignum_bitcount(a) - shift; ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS); if (ret) { shiftw = shift / BIGNUM_INT_BITS; shiftb = shift % BIGNUM_INT_BITS; shiftbb = BIGNUM_INT_BITS - shiftb; ai1 = a[shiftw + 1]; for (i = 1; i <= ret[0]; i++) { ai = ai1; ai1 = (i + shiftw + 1 <= a[0] ? a[i + shiftw + 1] : 0); ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK; } } return ret;}/* * Non-modular multiplication and addition. */Bignum bigmuladd(Bignum a, Bignum b, Bignum addend){ int alen = a[0], blen = b[0]; int mlen = (alen > blen ? alen : blen); int rlen, i, maxspot; BignumInt *workspace; Bignum ret; /* mlen space for a, mlen space for b, 2*mlen for result */ workspace = snewn(mlen * 4, BignumInt); for (i = 0; i < mlen; i++) { workspace[0 * mlen + i] = (mlen - i <= a[0] ? a[mlen - i] : 0); workspace[1 * mlen + i] = (mlen - i <= b[0] ? b[mlen - i] : 0); } internal_mul(workspace + 0 * mlen, workspace + 1 * mlen, workspace + 2 * mlen, mlen); /* now just copy the result back */ rlen = alen + blen + 1; if (addend && rlen <= addend[0]) rlen = addend[0] + 1; ret = newbn(rlen); maxspot = 0; for (i = 1; i <= ret[0]; i++) { ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0); if (ret[i] != 0) maxspot = i; } ret[0] = maxspot; /* now add in the addend, if any */ if (addend) { BignumDblInt carry = 0; for (i = 1; i <= rlen; i++) { carry += (i <= ret[0] ? ret[i] : 0); carry += (i <= addend[0] ? addend[i] : 0); ret[i] = (BignumInt) carry & BIGNUM_INT_MASK; carry >>= BIGNUM_INT_BITS; if (ret[i] != 0 && i > maxspot) maxspot = i; } } ret[0] = maxspot; sfree(workspace); return ret;}/* * Non-modular multiplication. */Bignum bigmul(Bignum a, Bignum b){ return bigmuladd(a, b, NULL);}/* * Create a bignum which is the bitmask covering another one. That * is, the smallest integer which is >= N and is also one less than * a power of two. */Bignum bignum_bitmask(Bignum n){ Bignum ret = copybn(n); int i; BignumInt j; i = ret[0]; while (n[i] == 0 && i > 0) i--; if (i <= 0) return ret; /* input was zero */ j = 1; while (j < n[i]) j = 2 * j + 1; ret[i] = j; while (--i > 0) ret[i] = BIGNUM_INT_MASK; return ret;}/* * Convert a (max 32-bit) long into a bignum. */Bignum bignum_from_long(unsigned long nn){ Bignum ret; BignumDblInt n = nn; ret = newbn(3); ret[1] = (BignumInt)(n & BIGNUM_INT_MASK); ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK); ret[3] = 0; ret[0] = (ret[2] ? 2 : 1); return ret;}/* * Add a long to a bignum. */Bignum bignum_add_long(Bignum number, unsigned long addendx){ Bignum ret = newbn(number[0] + 1); int i, maxspot = 0; BignumDblInt carry = 0, addend = addendx; for (i = 1; i <= ret[0]; i++) { carry += addend & BIGNUM_INT_MASK; carry += (i <= number[0] ? number[i] : 0); addend >>= BIGNUM_INT_BITS; ret[i] = (BignumInt) carry & BIGNUM_INT_MASK; carry >>= BIGNUM_INT_BITS; if (ret[i] != 0) maxspot = i; } ret[0] = maxspot; return ret;}/* * Compute the residue of a bignum, modulo a (max 16-bit) short. */unsigned short bignum_mod_short(Bignum number, unsigned short modulus){ BignumDblInt mod, r; int i; r = 0; mod = modulus; for (i = number[0]; i > 0; i--) r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod; return (unsigned short) r;}#ifdef DEBUGvoid diagbn(char *prefix, Bignum md){ int i, nibbles, morenibbles; static const char hex[] = "0123456789ABCDEF"; debug(("%s0x", prefix ? prefix : "")); nibbles = (3 + bignum_bitcount(md)) / 4; if (nibbles < 1) nibbles = 1; morenibbles = 4 * md[0] - nibbles; for (i = 0; i < morenibbles; i++) debug(("-")); for (i = nibbles; i--;) debug(("%c", hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF])); if (prefix) debug(("\n"));}#endif/* * Simple division. */Bignum bigdiv(Bignum a, Bignum b){ Bignum q = newbn(a[0]); bigdivmod(a, b, NULL, q); return q;}/* * Simple remainder. */Bignum bigmod(Bignum a, Bignum b){ Bignum r = newbn(b[0]); bigdivmod(a, b, r, NULL); return r;}/* * Greatest common divisor. */Bignum biggcd(Bignum av, Bignum bv){ Bignum a = copybn(av); Bignum b = copybn(bv); while (bignum_cmp(b, Zero) != 0) { Bignum t = newbn(b[0]); bigdivmod(a, b, t, NULL); while (t[0] > 1 && t[t[0]] == 0) t[0]--; freebn(a); a = b; b = t; } freebn(b); return a;}/* * Modular inverse, using Euclid's extended algorithm. */Bignum modinv(Bignum number, Bignum modulus){ Bignum a = copybn(modulus); Bignum b = copybn(number); Bignum xp = copybn(Zero); Bignum x = copybn(One); int sign = +1; while (bignum_cmp(b, One) != 0) { Bignum t = newbn(b[0]); Bignum q = newbn(a[0]); bigdivmod(a, b, t, q); while (t[0] > 1 && t[t[0]] == 0) t[0]--; freebn(a); a = b; b = t; t = xp; xp = x; x = bigmuladd(q, xp, t); sign = -sign; freebn(t); freebn(q); } freebn(b); freebn(a); freebn(xp); /* now we know that sign * x == 1, and that x < modulus */ if (sign < 0) { /* set a new x to be modulus - x */ Bignum newx = newbn(modulus[0]); BignumInt carry = 0; int maxspot = 1; int i; for (i = 1; i <= newx[0]; i++) { BignumInt aword = (i <= modulus[0] ? modulus[i] : 0); BignumInt bword = (i <= x[0] ? x[i] : 0); newx[i] = aword - bword - carry; bword = ~bword; carry = carry ? (newx[i] >= bword) : (newx[i] > bword); if (newx[i] != 0) maxspot = i; } newx[0] = maxspot; freebn(x); x = newx; } /* and return. */ return x;}/* * Render a bignum into decimal. Return a malloced string holding * the decimal representation. */char *bignum_decimal(Bignum x){ int ndigits, ndigit; int i, iszero; BignumDblInt carry; char *ret; BignumInt *workspace; /* * First, estimate the number of digits. Since log(10)/log(2) * is just greater than 93/28 (the joys of continued fraction * approximations...) we know that for every 93 bits, we need * at most 28 digits. This will tell us how much to malloc. * * Formally: if x has i bits, that means x is strictly less * than 2^i. Since 2 is less than 10^(28/93), this is less than * 10^(28i/93). We need an integer power of ten, so we must * round up (rounding down might make it less than x again). * Therefore if we multiply the bit count by 28/93, rounding * up, we will have enough digits. */ i = bignum_bitcount(x); ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */ ndigits++; /* allow for trailing \0 */ ret = snewn(ndigits, char); /* * Now allocate some workspace to hold the binary form as we * repeatedly divide it by ten. Initialise this to the * big-endian form of the number. */ workspace = snewn(x[0], BignumInt); for (i = 0; i < x[0]; i++) workspace[i] = x[x[0] - i]; /* * Next, write the decimal number starting with the last digit. * We use ordinary short division, dividing 10 into the * workspace. */ ndigit = ndigits - 1; ret[ndigit] = '\0'; do { iszero = 1; carry = 0; for (i = 0; i < x[0]; i++) { carry = (carry << BIGNUM_INT_BITS) + workspace[i]; workspace[i] = (BignumInt) (carry / 10); if (workspace[i]) iszero = 0; carry %= 10; } ret[--ndigit] = (char) (carry + '0'); } while (!iszero); /* * There's a chance we've fallen short of the start of the * string. Correct if so. */ if (ndigit > 0) memmove(ret, ret + ndigit, ndigits - ndigit); /* * Done. */ sfree(workspace); return ret;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -