⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sshdss.c

📁 大名鼎鼎的远程登录软件putty的Symbian版源码
💻 C
📖 第 1 页 / 共 2 页
字号:
    PUT_32BIT(p, 7);    p += 4;    memcpy(p, "ssh-dss", 7);    p += 7;    PUT_32BIT(p, plen);    p += 4;    for (i = plen; i--;)	*p++ = bignum_byte(dss->p, i);    PUT_32BIT(p, qlen);    p += 4;    for (i = qlen; i--;)	*p++ = bignum_byte(dss->q, i);    PUT_32BIT(p, glen);    p += 4;    for (i = glen; i--;)	*p++ = bignum_byte(dss->g, i);    PUT_32BIT(p, ylen);    p += 4;    for (i = ylen; i--;)	*p++ = bignum_byte(dss->y, i);    assert(p == blob + bloblen);    *len = bloblen;    return blob;}static unsigned char *dss_private_blob(void *key, int *len){    struct dss_key *dss = (struct dss_key *) key;    int xlen, bloblen;    int i;    unsigned char *blob, *p;    xlen = (bignum_bitcount(dss->x) + 8) / 8;    /*     * mpint x, string[20] the SHA of p||q||g. Total 4 + xlen.     */    bloblen = 4 + xlen;    blob = snewn(bloblen, unsigned char);    p = blob;    PUT_32BIT(p, xlen);    p += 4;    for (i = xlen; i--;)	*p++ = bignum_byte(dss->x, i);    assert(p == blob + bloblen);    *len = bloblen;    return blob;}static void *dss_createkey(unsigned char *pub_blob, int pub_len,			   unsigned char *priv_blob, int priv_len){    struct dss_key *dss;    char *pb = (char *) priv_blob;    char *hash;    int hashlen;    SHA_State s;    unsigned char digest[20];    Bignum ytest;    dss = dss_newkey((char *) pub_blob, pub_len);    dss->x = getmp(&pb, &priv_len);    /*     * Check the obsolete hash in the old DSS key format.     */    hashlen = -1;    getstring(&pb, &priv_len, &hash, &hashlen);    if (hashlen == 20) {	SHA_Init(&s);	sha_mpint(&s, dss->p);	sha_mpint(&s, dss->q);	sha_mpint(&s, dss->g);	SHA_Final(&s, digest);	if (0 != memcmp(hash, digest, 20)) {	    dss_freekey(dss);	    return NULL;	}    }    /*     * Now ensure g^x mod p really is y.     */    ytest = modpow(dss->g, dss->x, dss->p);    if (0 != bignum_cmp(ytest, dss->y)) {	dss_freekey(dss);	return NULL;    }    freebn(ytest);    return dss;}static void *dss_openssh_createkey(unsigned char **blob, int *len){    char **b = (char **) blob;    struct dss_key *dss;    dss = snew(struct dss_key);    if (!dss)	return NULL;    dss->p = getmp(b, len);    dss->q = getmp(b, len);    dss->g = getmp(b, len);    dss->y = getmp(b, len);    dss->x = getmp(b, len);    if (!dss->p || !dss->q || !dss->g || !dss->y || !dss->x) {	sfree(dss->p);	sfree(dss->q);	sfree(dss->g);	sfree(dss->y);	sfree(dss->x);	sfree(dss);	return NULL;    }    return dss;}static int dss_openssh_fmtkey(void *key, unsigned char *blob, int len){    struct dss_key *dss = (struct dss_key *) key;    int bloblen, i;    bloblen =	ssh2_bignum_length(dss->p) +	ssh2_bignum_length(dss->q) +	ssh2_bignum_length(dss->g) +	ssh2_bignum_length(dss->y) +	ssh2_bignum_length(dss->x);    if (bloblen > len)	return bloblen;    bloblen = 0;#define ENC(x) \    PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \    for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);    ENC(dss->p);    ENC(dss->q);    ENC(dss->g);    ENC(dss->y);    ENC(dss->x);    return bloblen;}static int dss_pubkey_bits(void *blob, int len){    struct dss_key *dss;    int ret;    dss = dss_newkey((char *) blob, len);    ret = bignum_bitcount(dss->p);    dss_freekey(dss);    return ret;}static unsigned char *dss_sign(void *key, char *data, int datalen, int *siglen){    /*     * The basic DSS signing algorithm is:     *      *  - invent a random k between 1 and q-1 (exclusive).     *  - Compute r = (g^k mod p) mod q.     *  - Compute s = k^-1 * (hash + x*r) mod q.     *      * This has the dangerous properties that:     *      *  - if an attacker in possession of the public key _and_ the     *    signature (for example, the host you just authenticated     *    to) can guess your k, he can reverse the computation of s     *    and work out x = r^-1 * (s*k - hash) mod q. That is, he     *    can deduce the private half of your key, and masquerade     *    as you for as long as the key is still valid.     *      *  - since r is a function purely of k and the public key, if     *    the attacker only has a _range of possibilities_ for k     *    it's easy for him to work through them all and check each     *    one against r; he'll never be unsure of whether he's got     *    the right one.     *      *  - if you ever sign two different hashes with the same k, it     *    will be immediately obvious because the two signatures     *    will have the same r, and moreover an attacker in     *    possession of both signatures (and the public key of     *    course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,     *    and from there deduce x as before.     *      *  - the Bleichenbacher attack on DSA makes use of methods of     *    generating k which are significantly non-uniformly     *    distributed; in particular, generating a 160-bit random     *    number and reducing it mod q is right out.     *      * For this reason we must be pretty careful about how we     * generate our k. Since this code runs on Windows, with no     * particularly good system entropy sources, we can't trust our     * RNG itself to produce properly unpredictable data. Hence, we     * use a totally different scheme instead.     *      * What we do is to take a SHA-512 (_big_) hash of the private     * key x, and then feed this into another SHA-512 hash that     * also includes the message hash being signed. That is:     *      *   proto_k = SHA512 ( SHA512(x) || SHA160(message) )     *      * This number is 512 bits long, so reducing it mod q won't be     * noticeably non-uniform. So     *      *   k = proto_k mod q     *      * This has the interesting property that it's _deterministic_:     * signing the same hash twice with the same key yields the     * same signature.     *      * Despite this determinism, it's still not predictable to an     * attacker, because in order to repeat the SHA-512     * construction that created it, the attacker would have to     * know the private key value x - and by assumption he doesn't,     * because if he knew that he wouldn't be attacking k!     *     * (This trick doesn't, _per se_, protect against reuse of k.     * Reuse of k is left to chance; all it does is prevent     * _excessively high_ chances of reuse of k due to entropy     * problems.)     *      * Thanks to Colin Plumb for the general idea of using x to     * ensure k is hard to guess, and to the Cambridge University     * Computer Security Group for helping to argue out all the     * fine details.     */    struct dss_key *dss = (struct dss_key *) key;    SHA512_State ss;    unsigned char digest[20], digest512[64];    Bignum proto_k, k, gkp, hash, kinv, hxr, r, s;    unsigned char *bytes;    int nbytes, i;    SHA_Simple(data, datalen, digest);    /*     * Hash some identifying text plus x.     */    SHA512_Init(&ss);    SHA512_Bytes(&ss, "DSA deterministic k generator", 30);    sha512_mpint(&ss, dss->x);    SHA512_Final(&ss, digest512);    /*     * Now hash that digest plus the message hash.     */    SHA512_Init(&ss);    SHA512_Bytes(&ss, digest512, sizeof(digest512));    SHA512_Bytes(&ss, digest, sizeof(digest));    SHA512_Final(&ss, digest512);    memset(&ss, 0, sizeof(ss));    /*     * Now convert the result into a bignum, and reduce it mod q.     */    proto_k = bignum_from_bytes(digest512, 64);    k = bigmod(proto_k, dss->q);    freebn(proto_k);    memset(digest512, 0, sizeof(digest512));    /*     * Now we have k, so just go ahead and compute the signature.     */    gkp = modpow(dss->g, k, dss->p);   /* g^k mod p */    r = bigmod(gkp, dss->q);	       /* r = (g^k mod p) mod q */    freebn(gkp);    hash = bignum_from_bytes(digest, 20);    kinv = modinv(k, dss->q);	       /* k^-1 mod q */    hxr = bigmuladd(dss->x, r, hash);  /* hash + x*r */    s = modmul(kinv, hxr, dss->q);     /* s = k^-1 * (hash + x*r) mod q */    freebn(hxr);    freebn(kinv);    freebn(hash);    /*     * Signature blob is     *      *   string  "ssh-dss"     *   string  two 20-byte numbers r and s, end to end     *      * i.e. 4+7 + 4+40 bytes.     */    nbytes = 4 + 7 + 4 + 40;    bytes = snewn(nbytes, unsigned char);    PUT_32BIT(bytes, 7);    memcpy(bytes + 4, "ssh-dss", 7);    PUT_32BIT(bytes + 4 + 7, 40);    for (i = 0; i < 20; i++) {	bytes[4 + 7 + 4 + i] = bignum_byte(r, 19 - i);	bytes[4 + 7 + 4 + 20 + i] = bignum_byte(s, 19 - i);    }    freebn(r);    freebn(s);    *siglen = nbytes;    return bytes;}const struct ssh_signkey ssh_dss = {    dss_newkey,    dss_freekey,    dss_fmtkey,    dss_public_blob,    dss_private_blob,    dss_createkey,    dss_openssh_createkey,    dss_openssh_fmtkey,    dss_pubkey_bits,    dss_fingerprint,    dss_verifysig,    dss_sign,    "ssh-dss",    "dss"};

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -