📄 knnclassification.m
字号:
function result = knnclassification(testsamplesX,samplesX, samplesY, Knn,type)
% Classify using the Nearest neighbor algorithm
% Inputs:
% samplesX - Train samples
% samplesY - Train labels
% testsamplesX - Test samples
% Knn - Number of nearest neighbors
%
% Outputs
% result - Predicted targets
if nargin < 5
type = '2norm';
end
L = length(samplesY);
Uc = unique(samplesY);
if (L < Knn),
error('You specified more neighbors than there are points.')
end
N = size(testsamplesX, 1);
result = zeros(N,1);
switch type
case '2norm'
for i = 1:N,
dist = sum((samplesX - ones(L,1)*testsamplesX(i,:)).^2,2);
[m, indices] = sort(dist);
n = hist(samplesY(indices(1:Knn)), Uc);
[m, best] = max(n);
result(i) = Uc(best);
end
case '1norm'
for i = 1:N,
dist = sum(abs(samplesX - ones(L,1)*testsamplesX(i,:)),2);
[m, indices] = sort(dist);
n = hist(samplesY(indices(1:Knn)), Uc);
[m, best] = max(n);
result(i) = Uc(best);
end
case 'match'
for i = 1:N,
dist = sum(samplesX == ones(L,1)*testsamplesX(i,:),2);
[m, indices] = sort(dist);
n = hist(samplesY(indices(1:Knn)), Uc);
[m, best] = max(n);
result(i) = Uc(best);
end
otherwise
error('Unknown measure function');
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -