📄 id3.java
字号:
package weka.classifiers.trees;import weka.classifiers.Classifier;import weka.classifiers.Evaluation;import weka.core.Attribute;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.NoSupportForMissingValuesException;import weka.core.TechnicalInformation;import weka.core.TechnicalInformation.Type;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.Capabilities.Capability;import java.util.Enumeration;public class Id3 extends Classifier implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -2693678647096322561L; /** The node's successors. */ private Id3[] m_Successors; /** Attribute used for splitting. */ private Attribute m_Attribute; /** Class value if node is leaf. */ private double m_ClassValue; /** Class distribution if node is leaf. */ private double[] m_Distribution; /** Class attribute of dataset. */ private Attribute m_ClassAttribute; /** * Returns a string describing the classifier. * @return a description suitable for the GUI. */ public String globalInfo() { return "Class for constructing an unpruned decision tree based on the ID3 " + "algorithm. Can only deal with nominal attributes. No missing values " + "allowed. Empty leaves may result in unclassified instances. For more " + "information see: \n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "R. Quinlan"); result.setValue(Field.YEAR, "1986"); result.setValue(Field.TITLE, "Induction of decision trees"); result.setValue(Field.JOURNAL, "Machine Learning"); result.setValue(Field.VOLUME, "1"); result.setValue(Field.NUMBER, "1"); result.setValue(Field.PAGES, "81-106"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(0); return result; } /** * Builds Id3 decision tree classifier. * * @param data the training data * @exception Exception if classifier can't be built successfully */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class data = new Instances(data); data.deleteWithMissingClass(); makeTree(data); } /** * Method for building an Id3 tree. * * @param data the training data * @exception Exception if decision tree can't be built successfully */ private void makeTree(Instances data) throws Exception { // Check if no instances have reached this node. if (data.numInstances() == 0) { m_Attribute = null; m_ClassValue = Instance.missingValue(); m_Distribution = new double[data.numClasses()]; return; } // Compute attribute with maximum information gain. double[] infoGains = new double[data.numAttributes()]; Enumeration attEnum = data.enumerateAttributes(); while (attEnum.hasMoreElements()) { Attribute att = (Attribute) attEnum.nextElement(); infoGains[att.index()] = computeInfoGain(data, att); } m_Attribute = data.attribute(Utils.maxIndex(infoGains)); // Make leaf if information gain is zero. // Otherwise create successors. if (Utils.eq(infoGains[m_Attribute.index()], 0)) { m_Attribute = null; m_Distribution = new double[data.numClasses()]; Enumeration instEnum = data.enumerateInstances(); while (instEnum.hasMoreElements()) { Instance inst = (Instance) instEnum.nextElement(); m_Distribution[(int) inst.classValue()]++; } Utils.normalize(m_Distribution); m_ClassValue = Utils.maxIndex(m_Distribution); m_ClassAttribute = data.classAttribute(); } else { Instances[] splitData = splitData(data, m_Attribute); m_Successors = new Id3[m_Attribute.numValues()]; for (int j = 0; j < m_Attribute.numValues(); j++) { m_Successors[j] = new Id3(); m_Successors[j].makeTree(splitData[j]); } } } /** * Classifies a given test instance using the decision tree. * * @param instance the instance to be classified * @return the classification * @throws NoSupportForMissingValuesException if instance has missing values */ public double classifyInstance(Instance instance) throws NoSupportForMissingValuesException { if (instance.hasMissingValue()) { throw new NoSupportForMissingValuesException("Id3: no missing values, " + "please."); } if (m_Attribute == null) { return m_ClassValue; } else { return m_Successors[(int) instance.value(m_Attribute)]. classifyInstance(instance); } } /** * Computes class distribution for instance using decision tree. * * @param instance the instance for which distribution is to be computed * @return the class distribution for the given instance * @throws NoSupportForMissingValuesException if instance has missing values */ public double[] distributionForInstance(Instance instance) throws NoSupportForMissingValuesException { if (instance.hasMissingValue()) { throw new NoSupportForMissingValuesException("Id3: no missing values, " + "please."); } if (m_Attribute == null) { return m_Distribution; } else { return m_Successors[(int) instance.value(m_Attribute)]. distributionForInstance(instance); } } /** * Prints the decision tree using the private toString method from below. * * @return a textual description of the classifier */ public String toString() { if ((m_Distribution == null) && (m_Successors == null)) { return "Id3: No model built yet."; } return "Id3\n\n" + toString(0); } /** * Computes information gain for an attribute. * * @param data the data for which info gain is to be computed * @param att the attribute * @return the information gain for the given attribute and data * @throws Exception if computation fails */ private double computeInfoGain(Instances data, Attribute att) throws Exception { double infoGain = computeEntropy(data); Instances[] splitData = splitData(data, att); for (int j = 0; j < att.numValues(); j++) { if (splitData[j].numInstances() > 0) { infoGain -= ((double) splitData[j].numInstances() / (double) data.numInstances()) * computeEntropy(splitData[j]); } } return infoGain; } /** * Computes the entropy of a dataset. * * @param data the data for which entropy is to be computed * @return the entropy of the data's class distribution * @throws Exception if computation fails */ private double computeEntropy(Instances data) throws Exception { double [] classCounts = new double[data.numClasses()]; Enumeration instEnum = data.enumerateInstances(); while (instEnum.hasMoreElements()) { Instance inst = (Instance) instEnum.nextElement(); classCounts[(int) inst.classValue()]++; } double entropy = 0; for (int j = 0; j < data.numClasses(); j++) { if (classCounts[j] > 0) { entropy -= classCounts[j] * Utils.log2(classCounts[j]); } } entropy /= (double) data.numInstances(); return entropy + Utils.log2(data.numInstances()); } /** * Splits a dataset according to the values of a nominal attribute. * * @param data the data which is to be split * @param att the attribute to be used for splitting * @return the sets of instances produced by the split */ private Instances[] splitData(Instances data, Attribute att) { Instances[] splitData = new Instances[att.numValues()]; for (int j = 0; j < att.numValues(); j++) { splitData[j] = new Instances(data, data.numInstances()); } Enumeration instEnum = data.enumerateInstances(); while (instEnum.hasMoreElements()) { Instance inst = (Instance) instEnum.nextElement(); splitData[(int) inst.value(att)].add(inst); } for (int i = 0; i < splitData.length; i++) { splitData[i].compactify(); } return splitData; } /** * Outputs a tree at a certain level. * * @param level the level at which the tree is to be printed * @return the tree as string at the given level */ private String toString(int level) { StringBuffer text = new StringBuffer(); if (m_Attribute == null) { if (Instance.isMissingValue(m_ClassValue)) { text.append(": null"); } else { text.append(": " + m_ClassAttribute.value((int) m_ClassValue)); } } else { for (int j = 0; j < m_Attribute.numValues(); j++) { text.append("\n"); for (int i = 0; i < level; i++) { text.append("| "); } text.append(m_Attribute.name() + " = " + m_Attribute.value(j)); text.append(m_Successors[j].toString(level + 1)); } } return text.toString(); } /** * Main method. * * @param args the options for the classifier */ public static void main(String[] args) { try { System.out.println(Evaluation.evaluateModel(new Id3(), args)); } catch (Exception e) { System.err.println(e.getMessage()); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -