📄 reedsolomon.java
字号:
/* * INFO: This class based on RSCODE (http://sourceforge.net/projects/rscode/), * a open source Reed Solomon Encoder/Decoder written by Mr.Henry Minsky . * Because it was written in C, Yusuke Yanbe ported decoder part into Java. */package jp.sourceforge.qrcode.ecc;public class ReedSolomon { //G(x)=a^8+a^4+a^3+a^2+1 int[] y; int[] gexp = new int[512]; int[] glog = new int[256]; int NPAR; //final int NPAR = 20; int MAXDEG; int[] synBytes; /* The Error Locator Polynomial, also known as Lambda or Sigma. Lambda[0] == 1 */ int[] Lambda; /* The Error Evaluator Polynomial */ int[] Omega; /* local ANSI declarations */ /* error locations found using Chien's search*/ int[] ErrorLocs = new int[256]; int NErrors; /* erasure flags */ int[] ErasureLocs = new int[256]; int NErasures = 0; boolean correctionSucceeded = true; public ReedSolomon(int[] source, int NPAR) { initializeGaloisTables(); y = source; this.NPAR = NPAR; MAXDEG = this.NPAR*2; synBytes = new int[MAXDEG]; Lambda = new int[MAXDEG]; Omega = new int[MAXDEG]; } void initializeGaloisTables() { int i, z; int pinit,p1,p2,p3,p4,p5,p6,p7,p8; pinit = p2 = p3 = p4 = p5 = p6 = p7 = p8 = 0; p1 = 1; gexp[0] = 1; gexp[255] = gexp[0]; glog[0] = 0; /* shouldn't log[0] be an error? */ for (i = 1; i < 256; i++) { pinit = p8; p8 = p7; p7 = p6; p6 = p5; p5 = p4 ^ pinit; p4 = p3 ^ pinit; p3 = p2 ^ pinit; p2 = p1; p1 = pinit; gexp[i] = p1 + p2*2 + p3*4 + p4*8 + p5*16 + p6*32 + p7*64 + p8*128; gexp[i+255] = gexp[i]; } for (i = 1; i < 256; i++) { for (z = 0; z < 256; z++) { if (gexp[z] == i) { glog[i] = z; break; } } } } /* multiplication using logarithms */ int gmult(int a, int b) { int i,j; if (a==0 || b == 0) return (0); i = glog[a]; j = glog[b]; return (gexp[i+j]); } int ginv (int elt) { return (gexp[255-glog[elt]]); } void decode_data(int[] data) { int i, j, sum; for (j = 0; j < MAXDEG; j++) { sum = 0; for (i = 0; i < data.length; i++) { sum = data[i] ^ gmult(gexp[j+1], sum); } synBytes[j] = sum; } } public void correct() {// return; decode_data(y); correctionSucceeded = true; boolean hasError = false; for (int i = 0; i < synBytes.length; i++) { //System.out.println("SyndromeS"+String.valueOf(i) + " = " + synBytes[i]); if (synBytes[i] != 0) hasError = true; } if (hasError) correctionSucceeded = correct_errors_erasures (y, y.length, 0, new int[1]); } public boolean isCorrectionSucceeded() { return correctionSucceeded; } public int getNumCorrectedErrors() { return NErrors; } /* From Cain, Clark, "Error-Correction Coding For Digital Communications", pp. 216. */ void Modified_Berlekamp_Massey () { int n, L, L2, k, d, i; int[] psi = new int[MAXDEG]; int[] psi2 = new int[MAXDEG]; int[] D = new int[MAXDEG]; int[] gamma = new int[MAXDEG]; /* initialize Gamma, the erasure locator polynomial */ init_gamma(gamma); /* initialize to z */ copy_poly(D, gamma); mul_z_poly(D); copy_poly(psi, gamma); k = -1; L = NErasures; for (n = NErasures; n < 8; n++) { d = compute_discrepancy(psi, synBytes, L, n); if (d != 0) { /* psi2 = psi - d*D */ for (i = 0; i < MAXDEG; i++) psi2[i] = psi[i] ^ gmult(d, D[i]); if (L < (n-k)) { L2 = n-k; k = n-L; /* D = scale_poly(ginv(d), psi); */ for (i = 0; i < MAXDEG; i++) D[i] = gmult(psi[i], ginv(d)); L = L2; } /* psi = psi2 */ for (i = 0; i < MAXDEG; i++) psi[i] = psi2[i]; } mul_z_poly(D); } for(i = 0; i < MAXDEG; i++) Lambda[i] = psi[i]; compute_modified_omega(); } /* given Psi (called Lambda in Modified_Berlekamp_Massey) and synBytes, compute the combined erasure/error evaluator polynomial as Psi*S mod z^4 */ void compute_modified_omega () { int i; int[] product = new int[MAXDEG*2]; mult_polys(product, Lambda, synBytes); zero_poly(Omega); for(i = 0; i < NPAR; i++) Omega[i] = product[i]; } /* polynomial multiplication */ void mult_polys (int[] dst, int[] p1, int[] p2) { int i, j; int[] tmp1 = new int[MAXDEG*2]; for (i=0; i < (MAXDEG*2); i++) dst[i] = 0; for (i = 0; i < MAXDEG; i++) { for(j=MAXDEG; j<(MAXDEG*2); j++) tmp1[j]=0; /* scale tmp1 by p1[i] */ for(j=0; j<MAXDEG; j++) tmp1[j]=gmult(p2[j], p1[i]); /* and mult (shift) tmp1 right by i */ for (j = (MAXDEG*2)-1; j >= i; j--) tmp1[j] = tmp1[j-i]; for (j = 0; j < i; j++) tmp1[j] = 0; /* add into partial product */ for(j=0; j < (MAXDEG*2); j++) dst[j] ^= tmp1[j]; } } /* gamma = product (1-z*a^Ij) for erasure locs Ij */ void init_gamma (int[] gamma) { int e; int[] tmp = new int[MAXDEG]; zero_poly(gamma); zero_poly(tmp); gamma[0] = 1; for (e = 0; e < NErasures; e++) { copy_poly(tmp, gamma); scale_poly(gexp[ErasureLocs[e]], tmp); mul_z_poly(tmp); add_polys(gamma, tmp); } } void compute_next_omega (int d, int[] A, int[] dst, int[] src) { int i; for ( i = 0; i < MAXDEG; i++) { dst[i] = src[i] ^ gmult(d, A[i]); } } int compute_discrepancy (int[] lambda, int[] S, int L, int n) { int i, sum=0; for (i = 0; i <= L; i++) sum ^= gmult(lambda[i], S[n-i]); return (sum); } /********** polynomial arithmetic *******************/ void add_polys (int[] dst, int[] src) { int i; for (i = 0; i < MAXDEG; i++) dst[i] ^= src[i]; } void copy_poly (int[] dst, int[] src) { int i; for (i = 0; i < MAXDEG; i++) dst[i] = src[i]; } void scale_poly (int k, int[] poly) { int i; for (i = 0; i < MAXDEG; i++) poly[i] = gmult(k, poly[i]); } void zero_poly (int[] poly) { int i; for (i = 0; i < MAXDEG; i++) poly[i] = 0; } /* multiply by z, i.e., shift right by 1 */ void mul_z_poly (int[] src) { int i; for (i = MAXDEG-1; i > 0; i--) src[i] = src[i-1]; src[0] = 0; } /* Finds all the roots of an error-locator polynomial with coefficients * Lambda[j] by evaluating Lambda at successive values of alpha. * * This can be tested with the decoder's equations case. */ void Find_Roots () { int sum, r, k; NErrors = 0; for (r = 1; r < 256; r++) { sum = 0; /* evaluate lambda at r */ for (k = 0; k < NPAR+1; k++) { sum ^= gmult(gexp[(k*r)%255], Lambda[k]); } if (sum == 0) { ErrorLocs[NErrors] = (255-r); NErrors++; //if (DEBUG) fprintf(stderr, "Root found at r = %d, (255-r) = %d\n", r, (255-r)); } } } /* Combined Erasure And Error Magnitude Computation * * Pass in the codeword, its size in bytes, as well as * an array of any known erasure locations, along the number * of these erasures. * * Evaluate Omega(actually Psi)/Lambda' at the roots * alpha^(-i) for error locs i. * * Returns 1 if everything ok, or 0 if an out-of-bounds error is found * */ boolean correct_errors_erasures (int[] codeword, int csize, int nerasures, int[] erasures) { int r, i, j, err; /* If you want to take advantage of erasure correction, be sure to set NErasures and ErasureLocs[] with the locations of erasures. */ NErasures = nerasures; for (i = 0; i < NErasures; i++) ErasureLocs[i] = erasures[i]; Modified_Berlekamp_Massey(); Find_Roots(); if ((NErrors <= NPAR) || NErrors > 0) { /* first check for illegal error locs */ for (r = 0; r < NErrors; r++) { if (ErrorLocs[r] >= csize) { //if (DEBUG) fprintf(stderr, "Error loc i=%d outside of codeword length %d\n", i, csize); //System.out.println("Error loc i="+ErrorLocs[r]+" outside of codeword length"+csize); return false; } } for (r = 0; r < NErrors; r++) { int num, denom; i = ErrorLocs[r]; /* evaluate Omega at alpha^(-i) */ num = 0; for (j = 0; j < MAXDEG; j++) num ^= gmult(Omega[j], gexp[((255-i)*j)%255]); /* evaluate Lambda' (derivative) at alpha^(-i) ; all odd powers disappear */ denom = 0; for (j = 1; j < MAXDEG; j += 2) { denom ^= gmult(Lambda[j], gexp[((255-i)*(j-1)) % 255]); } err = gmult(num, ginv(denom)); //if (DEBUG) fprintf(stderr, "Error magnitude %#x at loc %d\n", err, csize-i); codeword[csize-i-1] ^= err; } //for (int p = 0; p < codeword.length; p++) // System.out.println(codeword[p]); //System.out.println("correction succeeded"); return true; } else { //if (DEBUG && NErrors) fprintf(stderr, "Uncorrectable codeword\n"); //System.out.println("Uncorrectable codeword"); return false; } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -