⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mc6.htm

📁 一个非常适合初学者入门的有关c++的文档
💻 HTM
📖 第 1 页 / 共 5 页
字号:
public:  Chicken& operator=(const Chicken& rhs);  ...};This design gives you everything you need. Homogeneous assignments are allowed for lizards, chickens, and animals; partial assignments and heterogeneous assignments are prohibited; and derived class assignment operators may call the assignment operator in the base class. Furthermore, none of the code written in terms of the Animal, Lizard, or Chicken classes requires modification, because these classes continue to exist and to behave as they did before AbstractAnimal was introduced. Sure, such code has to be recompiled, but that's a small price to pay for the security of knowing that assignments that compile will behave intuitively and assignments that would behave unintuitively won't compile.For all this to work, AbstractAnimal must be abstract it must contain at least one pure virtual function. In most cases, coming up with a suitable function is not a problem, but on rare occasions you may find yourself facing the need to create a class like AbstractAnimal in which none of the member functions would naturally be declared pure virtual. In such cases, the conventional technique is to make the destructor a pure virtual function; that's what's shown above. In order to support polymorphism through pointers correctly, base classes need virtual destructors anyway (see Item E14), so the only cost associated with making such destructors pure virtual is the inconvenience of having to implement them outside their class definitions. (For an example, see page 195.)(If the notion of implementing a pure virtual function strikes you as odd, you just haven't been getting out enough. Declaring a function pure virtual doesn't mean it has no implementation, it means the current class is abstract, and any concrete class inheriting from the current class must declare the function as a "normal" virtual function (i.e., without the "=0").True, most pure virtual functions are never implemented, but pure virtual destructors are a special case. They must be implemented, because they are called whenever a derived class destructor is invoked. Furthermore, they often perform useful tasks, such as releasing resources (see Item 9) or logging messages. Implementing pure virtual functions may be uncommon in general, but for pure virtual destructors, it's not just common, it's mandatory.)You may have noticed that this discussion of assignment through base class pointers is based on the assumption that concrete base classes like Animal contain data members. If there are no data members, you might point out, there is no problem, and it would be safe to have a concrete class inherit from a second, dataless, concrete class.One of two situations applies to your data-free would-be concrete base class: either it might have data members in the future or it might not. If it might have data members in the future, all you're doing is postponing the problem until the data members are added, in which case you're merely trading short-term convenience for long-term grief (see also Item 32). Alternatively, if the base class should truly never have any data members, that sounds very much like it should be an abstract class in the first place. What use is a concrete base class without data?Replacement of a concrete base class like Animal with an abstract base class like AbstractAnimal yields benefits far beyond simply making the behavior of operator= easier to understand. It also reduces the chances that you'll try to treat arrays polymorphically, the unpleasant consequences of which are examined in Item 3. The most significant benefit of the technique, however, occurs at the design level, because replacing concrete base classes with abstract base classes forces you to explicitly recognize the existence of useful abstractions. That is, it makes you create new abstract classes for useful concepts, even if you aren't aware of the fact that the useful concepts exist.If you have two concrete classes C1 and C2 and you'd like C2 to publicly inherit from C1, you should transform that two-class hierarchy into a three-class hierarchy by creating a new abstract class A and having both C1 and C2 publicly inherit from it:The primary value of this transformation is that it forces you to identify the abstract class A. Clearly, C1 and C2 have something in common; that's why they're related by public inheritance (see Item E35). With this transformation, you must identify what that something is. Furthermore, you must formalize the something as a class in C++, at which point it becomes more than just a vague something, it achieves the status of a formal abstraction, one with well-defined member functions and well-defined semantics.All of which leads to some worrisome thinking. After all, every class represents some kind of abstraction, so shouldn't we create two classes for every concept in our hierarchy, one being abstract (to embody the abstract part of the abstraction) and one being concrete (to embody the object-generation part of the abstraction)? No. If you do, you'll end up with a hierarchy with too many classes. Such a hierarchy is difficult to understand, hard to maintain, and expensive to compile. That is not the goal of object-oriented design.The goal is to identify useful abstractions and to force them and only them into existence as abstract classes. But how do you identify useful abstractions? Who knows what abstractions might prove useful in the future? Who can predict who's going to want to inherit from what?Well, I don't know how to predict the future uses of an inheritance hierarchy, but I do know one thing: the need for an abstraction in one context may be coincidental, but the need for an abstraction in more than one context is usually meaningful. Useful abstractions, then, are those that are needed in more than one context. That is, they correspond to classes that are useful in their own right (i.e., it is useful to have objects of that type) and that are also useful for purposes of one or more derived classes.This is precisely why the transformation from concrete base class to abstract base class is useful: it forces the introduction of a new abstract class only when an existing concrete class is about to be used as a base class, i.e., when the class is about to be (re)used in a new context. Such abstractions are useful, because they have, through demonstrated need, shown themselves to be so.The first time a concept is needed, we can't justify the creation of both an abstract class (for the concept) and a concrete class (for the objects corresponding to that concept), but the second time that concept is needed, we can justify the creation of both the abstract and the concrete classes. The transformation I've described simply mechanizes this process, and in so doing it forces designers and programmers to represent explicitly those abstractions that are useful, even if the designers and programmers are not consciously aware of the useful concepts. It also happens to make it a lot easier to bring sanity to the behavior of assignment operators.Let's consider a brief example. Suppose you're working on an application that deals with moving information between computers on a network by breaking it into packets and transmitting them according to some protocol. All we'll consider here is the class or classes for representing packets. We'll assume such classes make sense for this application.Suppose you deal with only a single kind of transfer protocol and only a single kind of packet. Perhaps you've heard that other protocols and packet types exist, but you've never supported them, nor do you have any plans to support them in the future. Should you make an abstract class for packets (for the concept that a packet represents) as well as a concrete class for the packets you'll actually be using? If you do, you could hope to add new packet types later without changing the base class for packets. That would save you from having to recompile packet-using applications if you add new packet types. But that design requires two classes, and right now you need only one (for the particular type of packets you use). Is it worth complicating your design now to allow for future extension that may never take place?There is no unequivocally correct choice to be made here, but experience has shown it is nearly impossible to design good classes for concepts we do not understand well. If you create an abstract class for packets, how likely are you to get it right, especially since your experience is limited to only a single packet type? Remember that you gain the benefit of an abstract class for packets only if you can design that class so that future classes can inherit from it without its being changed in any way. (If it needs to be changed, you have to recompile all packet clients, and you've gained nothing.)It is unlikely you could design a satisfactory abstract packet class unless you were well versed in many different kinds of packets and in the varied contexts in which they are used. Given your limited experience in this case, my advice would be not to define an abstract class for packets, adding one later only if you find a need to inherit from the concrete packet class.The transformation I've described here is a way to identify the need for abstract classes, not the way. There are many other ways to identify good candidates for abstract classes; books on object-oriented analysis are filled with them. It's not the case that the only time you should introduce abstract classes is when you find yourself wanting to have a concrete class inherit from another concrete class. However, the desire to relate two concrete classes by public inheritance is usually indicative of a need for a new abstract class.As is often the case in such matters, brash reality sometimes intrudes on the peaceful ruminations of theory. Third-party C++ class libraries are proliferating with gusto, and what are you to do if you find yourself wanting to create a concrete class that inherits from a concrete class in a library to which you have only read access?You can't modify the library to insert a new abstract class, so your choices are both limited and unappealing: Derive your concrete class from the existing concrete class, and put up with the assignment-related problems we examined at the beginning of this Item. You'll also have to watch out for the array-related pitfalls described in Item 3. Try to find an abstract class higher in the library hierarchy that does most of what you need, then inherit from that class. Of course, there may not be a suitable class, and even if there is, you may have to duplicate a lot of effort that has already been put into the implementation of the concrete class whose functionality you'd like to extend. Implement your new class in terms of the library class you'd like to inherit from (see Items E40 and E42). For example, you could have an object of the library class as a data member, then reimplement the library class's interface in your new class: class Window {                      // this is the library classpublic:virtual void resize(int newWidth, int newHeight);virtual void repaint() const;int width() const;int height() const;};class SpecialWindow {               // this is the class youpublic:                             // wanted to have inherit  ...                               // from Window  // pass-through implementations of nonvirtual functions  int width() const { return w.width(); }  int height() const { return w.height(); }  // new implementations of "inherited" virtual functions  virtual void resize(int newWidth, int newHeight);  virtual void repaint() const;private:    Window w;};This strategy requires that you be prepared to update your class each time the library vendor updates the class on which you're dependent. It also requires that you be willing to forgo the ability to redefine virtual functions declared in the library class, because you can't redefine virtual functions unless you inherit them. Make do with what you've got. Use the concrete class that's in the library and modify your software so that the class suffices. Write non-member functions to provide the functionality you'd like to add to the class, but can't. The resulting software may not be as clear, as efficient, as maintainable, or as extensible as you'd like, but at least it will get the job done.None of these choices is particularly attractive, so you have to apply some engineering judgment and choose the poison you find least unappealing. It's not much fun, but life's like that sometimes. To make things easier for yourself (and the rest of us) in the future, complain to the vendors of libraries whose designs you find wanting. With luck (and a lot of comments from clients), those designs will improve as time goes on.Still, the general rule remains: non-leaf classes should be abstract. You may need to bend the rule when working with outside libraries, but in code over which you have control, adherence to it will yield dividends in the form of increased reliability, robustness, comprehensibility, and extensibility throughout your software. Back to Item 33: Make non-leaf classes abstractContinue to Item 35: Familiarize yourself with the language standardItem 34: Understand how to combine C++ and C in the same program.In many ways, the things you have to worry about when making a program out of some components in C++ and some in C are the same as those you have to worry about when cobbling together a C program out of object files produced by more than one C compiler. There is no way to combine such files unless the different compilers agree on implementation-dependent features like the size of ints and doubles, the mechanism by which parameters are passed from caller to callee, and whether the caller or the callee orchestrates the passing. These pragmatic aspects of mixed-compiler software development are quite properly ignored by language standardization efforts, so the only reliable way to know that object files from compiler A and compiler B can be safely combined in a program is to obtain assurances from the vendors of A and B that their products produce compatible output. This is as true for programs made up of C++ and C as it is for all-C++ or all-C programs, so before you try to mix C++ and C in the same program, make sure your C++ and C compilers generate compatible object files.Having done that, there are four other things you need to consider: name mangling, initialization of statics, dynamic memory allocation, and data structure compatibility.Name ManglingName mangling, as you may know, is the process through which your C++ compilers give each function in your program a unique name. In C, this process is unnecessary, because you can't overload function names, but nearly all C++ programs have at least a few functions with the same name. (Consider, for example, the iostream library, which declares several versions of operator<< and operator>>.) Overloading is incompatible with most linkers, because linkers generally take a dim view of multiple functions with the same name. Name mangling is a concession to the realities of linkers; in particular, to the fact that linkers usually insist on all function names being unique.As long as you stay within the confines of C++, name mangling is not likely to concern you. If you have a function name drawLine that a compiler mangles into xyzzy, you'll always use the name drawLine, and you'll have little reason to care that the underlying object files happen to refer to xyzzy.It's a different story if drawLine is in a C library. In that case, your C++ source file probably includes a header file that contains a declaration like this, void drawLine(int x1, int y1, int x2, int y2);and your code contains calls to drawLine in the usual fashion. Each such call is translated by your compilers into a call to the mangled name of that function, so when you write this, drawLine(a, b, c, d);          // call to unmangled function nameyour object files contain a function call that corresponds to this: xyzzy(a, b, c, d);             // call to mangled function mameBut if drawLine is a C function, the object file (or archive or dynamically linked library, etc.) that contains the compiled version of drawLine contains a function called drawLine; no name mangling has taken place. When you try to link the object files comprising your program together, you'll get an error, because the linker is looking for a function called xyzzy, and there is no such function.To solve this problem, you need a way to tell your C++ compilers not to mangle certain function names. You never want to mangle the names of functions written in other languages, whether they be in C, assembler, FORTRAN, Lisp, Forth, or what-have-you. (Yes, what-have-you would include COBOL, but then what would you have?) After all, if you call a C function named drawLine, it's really called drawLine, and your object code should contain a reference to that name, not to some mangled version of that name.To suppress name mangling, use C++'s extern "C" directive: // declare a function called drawLine; don't mangle// its nameextern "C"void drawLine(int x1, int y1, int x2, int y2);Don't be drawn into the trap of assuming that where there's an extern "C", there must be an extern "Pascal" and an extern "FORTRAN" as well. There's not, at least not in the standard. The best way to view extern "C" is not as an assertion that the associated function is written in C, but as a statement that the function should be called as if it were written in C. (Technically, extern "C" means the function has C linkage, but what that means is far from clear. One thing it always means, however, is that name mangling is suppressed.)For example, if you were so unfortunate as to have to write a function in assembler, you could declare it extern "C", too: // this function is in assembler  don't mangle its nameextern "C" void twiddleBits(unsigned char bits);You can even declare C++ functions extern "C". This can be useful if you're writing a library in C++ that you'd like to provide to clients using other programming languages. By suppressing the name mangling of your C++ function names, your clients can use the natural and intuitive names you choose instead of the mangled names your compilers would otherwise generate: // the following C++ function is designed for use outside// C++ and should not have its name mangledextern "C" void simulate(int iterations);Often you'll have a slew of functions whose names you don't want mangled, and it would be a pain to precede each with extern "C". Fortunately, you don't have to. extern "C" can also be made to apply to a whole set of functions. Just enclose them all in curly braces: extern "C" {                           // disable name mangling for                                       // all the following functions  void drawLine(int x1, int y1, int x2, int y2);  void twiddleBits(unsigned char bits);  void simulate(int iterations);  ...}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -