📄 canopy_evap.c
字号:
#include <stdio.h>#include <stdlib.h>#include <vicNl.h>static char vcid[] = "$Id: canopy_evap.c,v 4.1 2000/05/16 21:07:16 vicadmin Exp $";double canopy_evap(layer_data_struct *layer_wet, layer_data_struct *layer_dry, veg_var_struct *veg_var_wet, veg_var_struct *veg_var_dry, char CALC_EVAP, int veg_class, int month, double mu, double *Wdew, double dt, double rad, double vpd, double net_short, double air_temp, double ra, double displacement, double roughness, double ref_height, double elevation, double *prec, double *depth, double *Wcr, double *Wpwp, float *root)/********************************************************************** canopy_evap.c Dag Lohmann September 1995 This routine computes the evaporation, traspiration and throughfall of the vegetation types for multi-layered model. The value of x, the fraction of precipitation that exceeds the canopy storage capacity, is returned by the subroutine. UNITS: moist (mm) evap (mm) prec (mm) melt (mm) VARIABLE TYPE NAME UNITS DESCRIPTION atmos_data_struct atmos N/A atmospheric forcing data structure layer_data_struct *layer N/A soil layer variable structure veg_var_struct *veg_var N/A vegetation variable structure soil_con_struct soil_con N/A soil parameter structure char CALC_EVAP N/A TRUE = calculate evapotranspiration int veg_class N/A vegetation class index number int month N/A current month global_param_struct global N/A global parameter structure double mu fract wet (or dry) fraction of grid cell double ra s/m aerodynamic resistance double prec mm precipitation double displacement m displacement height of surface cover double roughness m roughness height of surface cover double ref_height m measurement reference height Modifications: 9/1/97 Greg O'Donnell 4-12-98 Code cleaned and final version prepared, KAC 06-25-98 modified for new distributed precipitation data structure KAC 01-19-00 modified to function with new simplified soil moisture scheme KAC**********************************************************************/{ /** declare global variables **/ extern veg_lib_struct *veg_lib; #if LINK_DEBUG extern debug_struct debug;#endif extern option_struct options; /** declare local variables **/ int Ndist; int dist; int i; double ppt; /* effective precipitation */ double f; /* fraction of time step used to fill canopy */ double throughfall; double Evap; double tmp_Evap; double canopyevap; double tmp_Wdew; double layerevap[MAX_LAYERS]; layer_data_struct *tmp_layer; veg_var_struct *tmp_veg_var; /********************************************************************** CANOPY EVAPORATION Calculation of evaporation from the canopy, including the possibility of potential evaporation exhausting ppt+canopy storage 2.16 + 2.17 Index [0] refers to current time step, index [1] to next one If f < 1.0 than veg_var->canopyevap = veg_var->Wdew + ppt and Wdew = 0.0 DEFINITIONS: Wdmax - max monthly dew holding capacity Wdew - dew trapped on vegetation Modified 04-14-98 to work within calc_surf_energy_balance.c KAC 07-24-98 fixed problem that caused hourly precipitation to evaporate from the canopy during the same time step that it falls (OK for daily time step, but causes oscilations in surface temperature for hourly time step) KAC, Dag **********************************************************************/ if(options.DIST_PRCP) Ndist = 2; else Ndist = 1; Evap = 0; for(dist=0;dist<Ndist;dist++) { /* Initialize variables */ for(i=0;i<options.Nlayer;i++) layerevap[i] = 0; canopyevap = 0; throughfall = 0; /* Set parameters for distributed precipitation */ if(dist==0) { tmp_layer = layer_wet; tmp_veg_var = veg_var_wet; ppt = prec[WET]; tmp_Wdew = Wdew[WET]; } else { tmp_layer = layer_dry; tmp_veg_var = veg_var_dry; ppt = prec[DRY]; mu = (1. - mu); tmp_Wdew = Wdew[DRY]; } if(mu > 0) { /**************************************************** Compute Evaporation from Canopy Intercepted Water ****************************************************/ /** Due to month changes ..... Wdmax based on LAI **/ tmp_veg_var->Wdew = tmp_Wdew; if (tmp_Wdew > veg_lib[veg_class].Wdmax[month-1]) { throughfall = tmp_Wdew - veg_lib[veg_class].Wdmax[month-1]; tmp_Wdew = veg_lib[veg_class].Wdmax[month-1]; } canopyevap = pow((tmp_Wdew / veg_lib[veg_class].Wdmax[month-1]), (2.0/3.0))* penman(rad, vpd * 1000., ra, (double) 0.0, veg_lib[veg_class].rarc, veg_lib[veg_class].LAI[month-1], (double) 1.0, air_temp, net_short, elevation, veg_lib[veg_class].RGL) * dt / 24.0; if (canopyevap > 0.0 && dt==24) /** If daily time step, evap can include current precipitation **/ f = min(1.0,((tmp_Wdew + ppt) / canopyevap)); else if (canopyevap > 0.0) /** If sub-daily time step, evap can not exceed current storage **/ f = min(1.0,((tmp_Wdew) / canopyevap)); else f = 1.0; canopyevap *= f; tmp_Wdew += ppt - canopyevap; if (tmp_Wdew < 0.0) tmp_Wdew = 0.0; if (tmp_Wdew <= veg_lib[veg_class].Wdmax[month-1]) throughfall += 0.0; else { throughfall += tmp_Wdew - veg_lib[veg_class].Wdmax[month-1]; tmp_Wdew = veg_lib[veg_class].Wdmax[month-1]; } /******************************************* Compute Evapotranspiration from Vegetation *******************************************/ if(CALC_EVAP) transpiration(tmp_layer, veg_class, month, rad, vpd, net_short, air_temp, ra, ppt, f, dt, tmp_veg_var->Wdew, elevation, depth, Wcr, Wpwp, &tmp_Wdew, &canopyevap, layerevap, root); } tmp_veg_var->canopyevap = canopyevap; tmp_veg_var->throughfall = throughfall; tmp_veg_var->Wdew = tmp_Wdew; tmp_Evap = canopyevap; for(i=0;i<options.Nlayer;i++) { tmp_layer[i].evap = layerevap[i]; tmp_Evap += layerevap[i]; } Evap += tmp_Evap * mu / (1000. * dt * 3600.); } return (Evap);}/********************************************************************** EVAPOTRANSPIRATION ROUTINE**********************************************************************/void transpiration(layer_data_struct *layer, int veg_class, int month, double rad, double vpd, double net_short, double air_temp, double ra, double ppt, double f, double dt, double Wdew, double elevation, double *depth, double *Wcr, double *Wpwp, double *new_Wdew, double *canopyevap, double *layerevap, float *root)/********************************************************************** Computes evapotranspiration for unfrozen soils Allows for multiple layers.**********************************************************************/{ extern veg_lib_struct *veg_lib; extern option_struct options; int i; double gsm_inv; /* soil moisture stress factor */ double moist1, moist2; /* tmp holding of moisture */ double evap; /* tmp holding for evap total */ double Wcr1; /* tmp holding of critical water for upper layers */ double root_sum; /* proportion of roots in moist>Wcr zones */ double spare_evap; /* evap for 2nd distribution */ double avail_moist[MAX_LAYERS]; /* moisture available for trans */ /********************************************************************** EVAPOTRANSPIRATION Calculation of the evapotranspirations 2.18 First part: Soil moistures and root fractions of both layers influence each other Re-written to allow for multi-layers. **********************************************************************/ /************************************************** Compute moisture content in combined upper layers **************************************************/ moist1 = 0.0; Wcr1 = 0.0; for(i=0;i<options.Nlayer-1;i++){ if(root[i] > 0.) { avail_moist[i] = layer[i].moist - layer[i].ice; moist1+=avail_moist[i]; Wcr1 += Wcr[i]; } else avail_moist[i]=0.; } /***************************************** Compute moisture content in lowest layer *****************************************/ i=options.Nlayer-1; moist2 = layer[i].moist - layer[i].ice; avail_moist[i]=moist2; /****************************************************************** CASE 1: Moisture in both layers exceeds Wcr, or Moisture in layer with more than half of the roots exceeds Wcr. Potential evapotranspiration not hindered by soil dryness. If layer with less than half the roots is dryer than Wcr, extra evaporation is taken from the wetter layer. Otherwise layers contribute to evapotransipration based on root fraction. ******************************************************************/ if( (moist1>=Wcr1 && moist2>=Wcr[options.Nlayer-1] && Wcr1>0.) || (moist1>=Wcr1 && (1-root[options.Nlayer-1])>= 0.5) || (moist2>=Wcr[options.Nlayer-1] && root[options.Nlayer-1]>=0.5) ){ gsm_inv=1.0; evap = penman(rad, vpd * 1000., ra, veg_lib[veg_class].rmin, veg_lib[veg_class].rarc, veg_lib[veg_class].LAI[month-1], gsm_inv, air_temp, net_short, elevation, veg_lib[veg_class].RGL) * dt / 24.0 * (1.0-f*pow((Wdew/veg_lib[veg_class].Wdmax[month-1]), (2.0/3.0))); /** divide up evap based on root distribution **/ /** Note the indexing of the roots **/ root_sum=1.0; spare_evap=0.0; for(i=0;i<options.Nlayer;i++){ if(avail_moist[i]>=Wcr[i]){ layerevap[i]=evap*(double)root[i]; } else { if (avail_moist[i] >= Wpwp[i]) gsm_inv = (avail_moist[i] - Wpwp[i]) / (Wcr[i] - Wpwp[i]); else gsm_inv=0.0; layerevap[i] = evap*gsm_inv*(double)root[i]; root_sum -= root[i]; spare_evap = evap*(double)root[i]*(1.0-gsm_inv); } } /** Assign excess evaporation to wetter layer **/ if(spare_evap>0.0){ for(i=0;i<options.Nlayer;i++){ if(avail_moist[i] >= Wcr[i]){ layerevap[i] += (double)root[i]*spare_evap/root_sum; } } } } /********************************************************************* CASE 2: Independent evapotranspirations Evapotranspiration is restricted by low soil moisture. Evaporation is computed independantly from each soil layer. *********************************************************************/ else { for(i=0;i<options.Nlayer;i++){ /** Set evaporation restriction factor **/ if(avail_moist[i] >= Wcr[i]) gsm_inv=1.0; else if(avail_moist[i] >= Wpwp[i]) gsm_inv=(avail_moist[i] - Wpwp[i]) / (Wcr[i] - Wpwp[i]); else gsm_inv=0.0; if(gsm_inv > 0.0){ /** Compute potential evapotranspiration **/ layerevap[i] = penman(rad, vpd * 1000., ra, veg_lib[veg_class].rmin, veg_lib[veg_class].rarc, veg_lib[veg_class].LAI[month-1], gsm_inv, air_temp, net_short, elevation, veg_lib[veg_class].RGL) * dt / 24.0 * (double)root[i] * (1.0-f*pow((Wdew/ veg_lib[veg_class].Wdmax[month-1]), (2.0/3.0))); } else layerevap[i] = 0.0; } } /**************************************************************** Check that evapotransipration does not cause soil moisture to fall below wilting point. ****************************************************************/ for(i=0;i<options.Nlayer;i++){ if(layerevap[i] > layer[i].moist - Wpwp[i]) { layerevap[i] = layer[i].moist - Wpwp[i]; } if ( layerevap[i] < 0.0 ) { layerevap[i] = 0.0; } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -