📄 netamfinal.html
字号:
<html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <!--This HTML is auto-generated from an M-file.To make changes, update the M-file and republish this document. --> <title>netAMfINAL</title> <meta name="generator" content="MATLAB 7.0.1"> <meta name="date" content="2007-02-20"> <meta name="m-file" content="netAMfINAL"><style>body { background-color: white; margin:10px;}h1 { color: #990000; font-size: x-large;}h2 { color: #990000; font-size: medium;}p.footer { text-align: right; font-size: xx-small; font-weight: lighter; font-style: italic; color: gray;}pre.codeinput { margin-left: 30px;}span.keyword {color: #0000FF}span.comment {color: #228B22}span.string {color: #A020F0}span.untermstring {color: #B20000}span.syscmd {color: #B28C00}pre.showbuttons { margin-left: 30px; border: solid black 2px; padding: 4px; background: #EBEFF3;}pre.codeoutput { color: gray; font-style: italic;}pre.error { color: red;}/* Make the text shrink to fit narrow windows, but not stretch too far in wide windows. On Gecko-based browsers, the shrink-to-fit doesn't work. */ p,h1,h2,div { /* for MATLAB's browser */ width: 600px; /* for Mozilla, but the "width" tag overrides it anyway */ max-width: 600px; /* for IE */ width:expression(document.body.clientWidth > 620 ? "600px": "auto" );} </style></head> <body> <h2>Contents</h2> <div> <ul> <li><a href="#1">Discrete Energy Separation Algorithm 1(DESA-1)for estimation purpose on an AM signal.</a></li> <li><a href="#2">implementation of backward difference approximation for the first derivative of x(t):</a></li> <li><a href="#3">Applying Non Linear Energy Tracking Operator for discrete time case (denoted by 'e')</a></li> <li><a href="#4">Estimation of intantaneous frequency</a></li> <li><a href="#5">Estimation of amplitude envelop</a></li> <li><a href="#6">the usual way</a></li> </ul> </div> <h2>Discrete Energy Separation Algorithm 1(DESA-1)for estimation purpose on an AM signal.<a name="1"></a></h2><pre class="codeinput"><span class="comment">%we are considering 512 samples of AM Signal given by the following equation:</span>k=0.8;w=pi/128;q=pi/6;<span class="keyword">for</span> n=1:512 x(n)=(1+(k*cos(w*(n))))*(cos(q*(n)));<span class="keyword">end</span></pre><h2>implementation of backward difference approximation for the first derivative of x(t):<a name="2"></a></h2><pre class="codeinput"><span class="keyword">for</span> n=2:512 y(n)=x(n)-x(n-1);<span class="keyword">end</span>plot(y)hold <span class="string">on</span></pre><img vspace="5" hspace="5" src="netAMfINAL_01.png"> <h2>Applying Non Linear Energy Tracking Operator for discrete time case (denoted by 'e')<a name="3"></a></h2><pre class="codeinput"><span class="keyword">for</span> n=2:511 ey(n) = (y(n)^2) - ((y(n-1)) * (y(n+1)));<span class="keyword">end</span>plot(ey,<span class="string">'g'</span>)hold <span class="string">on</span><span class="keyword">for</span> n=2:511 ex(n) = (x(n)^2) - ((x(n-1)) * (x(n+1)));<span class="keyword">end</span>plot(ex,<span class="string">'r'</span>)hold <span class="string">on</span></pre><img vspace="5" hspace="5" src="netAMfINAL_02.png"> <h2>Estimation of intantaneous frequency<a name="4"></a></h2><pre class="codeinput"><span class="keyword">for</span> n=2:510 Q(n)=acos(1-(((ey(n)+ey(n+1))/(4*(ex(n))))));<span class="keyword">end</span>plot(Q)hold <span class="string">on</span></pre><img vspace="5" hspace="5" src="netAMfINAL_03.png"> <h2>Estimation of amplitude envelop<a name="5"></a></h2><pre class="codeinput"><span class="keyword">for</span> n=2:510 j(n)=sqrt(ex(n)/(1-(1-(((ey(n)+ey(n+1))/(4*(ex(n))))))^2));<span class="keyword">end</span><span class="comment">% j()</span>plot(j,<span class="string">'r'</span>)</pre><img vspace="5" hspace="5" src="netAMfINAL_04.png"> <h2>the usual way<a name="6"></a></h2><pre class="codeinput"><span class="keyword">for</span> n=1:512 x(n)=(1+(k*cos(w*(n))))*(cos(q*(n)));<span class="keyword">end</span><span class="keyword">for</span> n=2:511 <span class="comment">% for envelop of signal.</span> j(n)=(1 + ((k)*(cos(w*n))));<span class="keyword">end</span> plot(j,<span class="string">'o'</span>) <span class="comment">% the overlapping of '0'with our result established by NLE shows the</span> <span class="comment">% importance of NLE operators</span></pre><img vspace="5" hspace="5" src="netAMfINAL_05.png"> <p class="footer"><br> Published with MATLAB® 7.0.1<br></p> <!--##### SOURCE BEGIN #####%% Discrete Energy Separation Algorithm 1(DESA-1)for estimation purpose on an AM signal.
%we are considering 512 samples of AM Signal given by the following equation:
k=0.8;
w=pi/128;
q=pi/6;
for n=1:512
x(n)=(1+(k*cos(w*(n))))*(cos(q*(n)));
end
%% implementation of backward difference approximation for the first derivative of x(t):
for n=2:512
y(n)=x(n)-x(n-1);
end
plot(y)
hold on
%% Applying Non Linear Energy Tracking Operator for discrete time case (denoted by 'e')
for n=2:511
ey(n) = (y(n)^2) - ((y(n-1)) * (y(n+1)));
end
plot(ey,'g')
hold on
for n=2:511
ex(n) = (x(n)^2) - ((x(n-1)) * (x(n+1)));
end
plot(ex,'r')
hold on
%% Estimation of intantaneous frequency
for n=2:510
Q(n)=acos(1-(((ey(n)+ey(n+1))/(4*(ex(n))))));
end
plot(Q)
hold on
%% Estimation of amplitude envelop
for n=2:510
j(n)=sqrt(ex(n)/(1-(1-(((ey(n)+ey(n+1))/(4*(ex(n))))))^2));
end
% j()
plot(j,'r')
%% the usual way
for n=1:512
x(n)=(1+(k*cos(w*(n))))*(cos(q*(n)));
end
for n=2:511 % for envelop of signal.
j(n)=(1 + ((k)*(cos(w*n))));
end
plot(j,'o')
% the overlapping of '0'with our result established by NLE shows the
% importance of NLE operators##### SOURCE END #####--> </body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -