📄 kconfig
字号:
Say Y here to enable kernel support for the on-board serial port.config SERIAL_TX3912_CONSOLE bool "Console on TX3912/PR31700 serial port" depends on SERIAL_TX3912 help The TX3912 is a Toshiba RISC processor based o the MIPS 3900 core; see <http://www.toshiba.com/taec/components/Generic/risc/tx3912.htm>. Say Y here to direct console I/O to the on-board serial port.config TXX927_SERIAL bool "TXx927 SIO support" depends on MIPS && CPU_TX39XX=yconfig TXX927_SERIAL_CONSOLE bool "TXx927 SIO Console support" depends on TXX927_SERIALconfig SIBYTE_SB1250_DUART bool "Support for BCM1xxx onchip DUART" depends on MIPS && SIBYTE_SB1xxx_SOC=yconfig SIBYTE_SB1250_DUART_CONSOLE bool "Console on BCM1xxx DUART" depends on SIBYTE_SB1250_DUARTconfig QTRONIX_KEYBOARD bool "Enable Qtronix 990P Keyboard Support" depends on MIPS && (MIPS_ITE8172 || MIPS_IVR) help Images of Qtronix keyboards are at <http://www.qtronix.com/keyboard.html>.config IT8172_CIR bool depends on QTRONIX_KEYBOARD default yconfig IT8172_SCR0 bool "Enable Smart Card Reader 0 Support " depends on MIPS && (MIPS_ITE8172 || MIPS_IVR) help Say Y here to support smart-card reader 0 (SCR0) on the Integrated Technology Express, Inc. ITE8172 SBC. Vendor page at <http://www.ite.com.tw/ia/brief_it8172bsp.htm>; picture of the board at <http://www.mvista.com/partners/semiconductor/ite.html>.config IT8172_SCR1 bool "Enable Smart Card Reader 1 Support " depends on MIPS && (MIPS_ITE8172 || MIPS_IVR) && MIPS_ITE8172 help Say Y here to support smart-card reader 1 (SCR1) on the Integrated Technology Express, Inc. ITE8172 SBC. Vendor page at <http://www.ite.com.tw/ia/brief_it8172bsp.htm>; picture of the board at <http://www.mvista.com/partners/semiconductor/ite.html>.config ITE_GPIO tristate "ITE GPIO" depends on MIPS && MIPS_ITE8172config A2232 tristate "Commodore A2232 serial support (EXPERIMENTAL)" depends on EXPERIMENTAL && ZORRO && BROKEN_ON_SMP ---help--- This option supports the 2232 7-port serial card shipped with the Amiga 2000 and other Zorro-bus machines, dating from 1989. At a max of 19,200 bps, the ports are served by a 6551 ACIA UART chip each, plus a 8520 CIA, and a master 6502 CPU and buffer as well. The ports were connected with 8 pin DIN connectors on the card bracket, for which 8 pin to DB25 adapters were supplied. The card also had jumpers internally to toggle various pinning configurations. This driver can be built as a module; but then "generic_serial" will also be built as a module. This has to be loaded before "ser_a2232". If you want to do this, answer M here.config SGI_SNSC bool "SGI Altix system controller communication support" depends on (IA64_SGI_SN2 || IA64_GENERIC) help If you have an SGI Altix and you want to enable system controller communication from user space (you want this!), say Y. Otherwise, say N.source "drivers/serial/Kconfig"config UNIX98_PTYS bool "Unix98 PTY support" if EMBEDDED default y ---help--- A pseudo terminal (PTY) is a software device consisting of two halves: a master and a slave. The slave device behaves identical to a physical terminal; the master device is used by a process to read data from and write data to the slave, thereby emulating a terminal. Typical programs for the master side are telnet servers and xterms. Linux has traditionally used the BSD-like names /dev/ptyxx for masters and /dev/ttyxx for slaves of pseudo terminals. This scheme has a number of problems. The GNU C library glibc 2.1 and later, however, supports the Unix98 naming standard: in order to acquire a pseudo terminal, a process opens /dev/ptmx; the number of the pseudo terminal is then made available to the process and the pseudo terminal slave can be accessed as /dev/pts/<number>. What was traditionally /dev/ttyp2 will then be /dev/pts/2, for example. All modern Linux systems use the Unix98 ptys. Say Y unless you're on an embedded system and want to conserve memory.config LEGACY_PTYS bool "Legacy (BSD) PTY support" default y ---help--- A pseudo terminal (PTY) is a software device consisting of two halves: a master and a slave. The slave device behaves identical to a physical terminal; the master device is used by a process to read data from and write data to the slave, thereby emulating a terminal. Typical programs for the master side are telnet servers and xterms. Linux has traditionally used the BSD-like names /dev/ptyxx for masters and /dev/ttyxx for slaves of pseudo terminals. This scheme has a number of problems, including security. This option enables these legacy devices; on most systems, it is safe to say N.config LEGACY_PTY_COUNT int "Maximum number of legacy PTY in use" depends on LEGACY_PTYS range 1 256 default "256" ---help--- The maximum number of legacy PTYs that can be used at any one time. The default is 256, and should be more than enough. Embedded systems may want to reduce this to save memory. When not in use, each legacy PTY occupies 12 bytes on 32-bit architectures and 24 bytes on 64-bit architectures.config PRINTER tristate "Parallel printer support" depends on PARPORT ---help--- If you intend to attach a printer to the parallel port of your Linux box (as opposed to using a serial printer; if the connector at the printer has 9 or 25 holes ["female"], then it's serial), say Y. Also read the Printing-HOWTO, available from <http://www.tldp.org/docs.html#howto>. It is possible to share one parallel port among several devices (e.g. printer and ZIP drive) and it is safe to compile the corresponding drivers into the kernel. To compile this driver as a module, choose M here and read <file:Documentation/parport.txt>. The module will be called lp. If you have several parallel ports, you can specify which ports to use with the "lp" kernel command line option. (Try "man bootparam" or see the documentation of your boot loader (lilo or loadlin) about how to pass options to the kernel at boot time.) The syntax of the "lp" command line option can be found in <file:drivers/char/lp.c>. If you have more than 8 printers, you need to increase the LP_NO macro in lp.c and the PARPORT_MAX macro in parport.h.config LP_CONSOLE bool "Support for console on line printer" depends on PRINTER ---help--- If you want kernel messages to be printed out as they occur, you can have a console on the printer. This option adds support for doing that; to actually get it to happen you need to pass the option "console=lp0" to the kernel at boot time. If the printer is out of paper (or off, or unplugged, or too busy..) the kernel will stall until the printer is ready again. By defining CONSOLE_LP_STRICT to 0 (at your own risk) you can make the kernel continue when this happens, but it'll lose the kernel messages. If unsure, say N.config PPDEV tristate "Support for user-space parallel port device drivers" depends on PARPORT ---help--- Saying Y to this adds support for /dev/parport device nodes. This is needed for programs that want portable access to the parallel port, for instance deviceid (which displays Plug-and-Play device IDs). This is the parallel port equivalent of SCSI generic support (sg). It is safe to say N to this -- it is not needed for normal printing or parallel port CD-ROM/disk support. To compile this driver as a module, choose M here: the module will be called ppdev. If unsure, say N.config TIPAR tristate "Texas Instruments parallel link cable support" depends on PARPORT ---help--- If you own a Texas Instruments graphing calculator and use a parallel link cable, then you might be interested in this driver. If you enable this driver, you will be able to communicate with your calculator through a set of device nodes under /dev. The main advantage of this driver is that you don't have to be root to use this precise link cable (depending on the permissions on the device nodes, though). To compile this driver as a module, choose M here: the module will be called tipar. If you don't know what a parallel link cable is or what a Texas Instruments graphing calculator is, then you probably don't need this driver. If unsure, say N.config HVC_CONSOLE bool "pSeries Hypervisor Virtual Console support" depends on PPC_PSERIES help pSeries machines when partitioned support a hypervisor virtual console. This driver allows each pSeries partition to have a console which is accessed via the HMC.config HVCS tristate "IBM Hypervisor Virtual Console Server support" depends on PPC_PSERIES help Partitionable IBM Power5 ppc64 machines allow hosting of firmware virtual consoles from one Linux partition by another Linux partition. This driver allows console data from Linux partitions to be accessed through TTY device interfaces in the device tree of a Linux partition running this driver. To compile this driver as a module, choose M here: the module will be called hvcs.ko. Additionally, this module will depend on arch specific APIs exported from hvcserver.ko which will also be compiled when this driver is built as a module.source "drivers/char/ipmi/Kconfig"source "drivers/char/watchdog/Kconfig"config DS1620 tristate "NetWinder thermometer support" depends on ARCH_NETWINDER help Say Y here to include support for the thermal management hardware found in the NetWinder. This driver allows the user to control the temperature set points and to read the current temperature. It is also possible to say M here to build it as a module (ds1620) It is recommended to be used on a NetWinder, but it is not a necessity.config NWBUTTON tristate "NetWinder Button" depends on ARCH_NETWINDER ---help--- If you say Y here and create a character device node /dev/nwbutton with major and minor numbers 10 and 158 ("man mknod"), then every time the orange button is pressed a number of times, the number of times the button was pressed will be written to that device. This is most useful for applications, as yet unwritten, which perform actions based on how many times the button is pressed in a row. Do not hold the button down for too long, as the driver does not alter the behaviour of the hardware reset circuitry attached to the button; it will still execute a hard reset if the button is held down for longer than approximately five seconds. To compile this driver as a module, choose M here: the module will be called nwbutton. Most people will answer Y to this question and "Reboot Using Button" below to be able to initiate a system shutdown from the button.config NWBUTTON_REBOOT bool "Reboot Using Button" depends on NWBUTTON help If you say Y here, then you will be able to initiate a system shutdown and reboot by pressing the orange button a number of times. The number of presses to initiate the shutdown is two by default, but this can be altered by modifying the value of NUM_PRESSES_REBOOT in nwbutton.h and recompiling the driver or, if you compile the driver as a module, you can specify the number of presses at load time with "insmod button reboot_count=<something>".config NWFLASH tristate "NetWinder flash support" depends on ARCH_NETWINDER ---help--- If you say Y here and create a character device /dev/flash with major 10 and minor 160 you can manipulate the flash ROM containing the NetWinder firmware. Be careful as accidentally overwriting the flash contents can render your computer unbootable. On no account allow random users access to this device. :-) To compile this driver as a module, choose M here: the module will be called nwflash. If you're not sure, say N.config HW_RANDOM tristate "Intel/AMD/VIA HW Random Number Generator support" depends on (X86 || IA64) && PCI ---help--- This driver provides kernel-side support for the Random Number Generator hardware found on Intel i8xx-based motherboards, AMD 76x-based motherboards, and Via Nehemiah CPUs. Provides a character driver, used to read() entropy data. To compile this driver as a module, choose M here: the module will be called hw_random. If unsure, say N.config NVRAM tristate "/dev/nvram support" depends on ATARI || X86 || X86_64 || ARM || GENERIC_NVRAM ---help--- If you say Y here and create a character special file /dev/nvram with major number 10 and minor number 144 using mknod ("man mknod"), you get read and write access to the extra bytes of non-volatile memory in the real time clock (RTC), which is contained in every PC and most Ataris. The actual number of bytes varies, depending on the nvram in the system, but is usually 114 (128-14 for the RTC). This memory is conventionally called "CMOS RAM" on PCs and "NVRAM" on Ataris. /dev/nvram may be used to view settings there, or to change them (with some utility). It could also be used to frequently save a few bits of very important data that may not be lost over power-off and for which writing to disk is too insecure. Note however that most NVRAM space in a PC belongs to the BIOS and you should NEVER idly tamper with it. See Ralf Brown's interrupt list for a guide to the use of CMOS bytes by your BIOS. On Atari machines, /dev/nvram is always configured and does not need to be selected. To compile this driver as a module, choose M here: the module will be called nvram.config RTC tristate "Enhanced Real Time Clock Support" depends on !PPC32 && !PARISC && !IA64 && !M68K && !ARCH_SA1100 && !ARCH_PXA ---help--- If you say Y here and create a character special file /dev/rtc with major number 10 and minor number 135 using mknod ("man mknod"), you will get access to the real time clock (or hardware clock) built into your computer. Every PC has such a clock built in. It can be used to generate signals from as low as 1Hz up to 8192Hz, and can also be used as a 24 hour alarm. It reports status information via the file /proc/driver/rtc and its behaviour is set by various ioctls on /dev/rtc. If you run Linux on a multiprocessor machine and said Y to
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -