⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fft4f2d.c

📁 2维fft程序
💻 C
📖 第 1 页 / 共 4 页
字号:
/*Fast Fourier/Cosine/Sine Transform    dimension   :two    data length :power of 2    decimation  :frequency    radix       :4, 2, row-column    data        :inplace    table       :usefunctions    cdft2d: Complex Discrete Fourier Transform    rdft2d: Real Discrete Fourier Transform    ddct2d: Discrete Cosine Transform    ddst2d: Discrete Sine Transformfunction prototypes    void cdft2d(int, int, int, double **, int *, double *);    void rdft2d(int, int, int, double **, int *, double *);    void ddct2d(int, int, int, double **, double **, int *, double *);    void ddst2d(int, int, int, double **, double **, int *, double *);-------- Complex DFT (Discrete Fourier Transform) --------    [definition]        <case1>            X[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 x[j1][j2] *                             exp(2*pi*i*j1*k1/n1) *                             exp(2*pi*i*j2*k2/n2), 0<=k1<n1, 0<=k2<n2        <case2>            X[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 x[j1][j2] *                             exp(-2*pi*i*j1*k1/n1) *                             exp(-2*pi*i*j2*k2/n2), 0<=k1<n1, 0<=k2<n2        (notes: sum_j=0^n-1 is a summation from j=0 to n-1)    [usage]        <case1>            ip[0] = 0; // first time only            cdft2d(n1, 2*n2, 1, a, ip, w);        <case2>            ip[0] = 0; // first time only            cdft2d(n1, 2*n2, -1, a, ip, w);    [parameters]        n1     :data length (int)                n1 >= 1, n1 = power of 2        2*n2   :data length (int)                n2 >= 1, n2 = power of 2        a[0...n1-1][0...2*n2-1]               :input/output data (double **)                input data                    a[j1][2*j2] = Re(x[j1][j2]),                     a[j1][2*j2+1] = Im(x[j1][j2]),                     0<=j1<n1, 0<=j2<n2                output data                    a[k1][2*k2] = Re(X[k1][k2]),                     a[k1][2*k2+1] = Im(X[k1][k2]),                     0<=k1<n1, 0<=k2<n2        ip[0...*]               :work area for bit reversal (int *)                length of ip >= 2+sqrt(n)                (n = max(n1, n2))                ip[0],ip[1] are pointers of the cos/sin table.        w[0...*]               :cos/sin table (double *)                length of w >= max(n1/2, n2/2)                w[],ip[] are initialized if ip[0] == 0.    [remark]        Inverse of             cdft2d(n1, 2*n2, -1, a, ip, w);        is             cdft2d(n1, 2*n2, 1, a, ip, w);            for (j1 = 0; j1 <= n1 - 1; j1++) {                for (j2 = 0; j2 <= 2 * n2 - 1; j2++) {                    a[j1][j2] *= 1.0 / (n1 * n2);                }            }        .-------- Real DFT / Inverse of Real DFT --------    [definition]        <case1> RDFT            R[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] *                             cos(2*pi*j1*k1/n1 + 2*pi*j2*k2/n2),                             0<=k1<n1, 0<=k2<n2            I[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] *                             sin(2*pi*j1*k1/n1 + 2*pi*j2*k2/n2),                             0<=k1<n1, 0<=k2<n2        <case2> IRDFT (excluding scale)            a[k1][k2] = (1/2) * sum_j1=0^n1-1 sum_j2=0^n2-1                            (R[j1][j2] *                             cos(2*pi*j1*k1/n1 + 2*pi*j2*k2/n2) +                             I[j1][j2] *                             sin(2*pi*j1*k1/n1 + 2*pi*j2*k2/n2)),                             0<=k1<n1, 0<=k2<n2        (notes: R[n1-k1][n2-k2] = R[k1][k2],                 I[n1-k1][n2-k2] = -I[k1][k2],                 R[n1-k1][0] = R[k1][0],                 I[n1-k1][0] = -I[k1][0],                 R[0][n2-k2] = R[0][k2],                 I[0][n2-k2] = -I[0][k2],                 0<k1<n1, 0<k2<n2)    [usage]        <case1>            ip[0] = 0; // first time only            rdft2d(n1, n2, 1, a, ip, w);        <case2>            ip[0] = 0; // first time only            rdft2d(n1, n2, -1, a, ip, w);    [parameters]        n1     :data length (int)                n1 >= 2, n1 = power of 2        n2     :data length (int)                n2 >= 2, n2 = power of 2        a[0...n1-1][0...n2-1]               :input/output data (double **)                <case1>                    output data                        a[k1][2*k2] = R[k1][k2] = R[n1-k1][n2-k2],                         a[k1][2*k2+1] = I[k1][k2] = -I[n1-k1][n2-k2],                             0<k1<n1, 0<k2<n2/2,                         a[0][2*k2] = R[0][k2] = R[0][n2-k2],                         a[0][2*k2+1] = I[0][k2] = -I[0][n2-k2],                             0<k2<n2/2,                         a[k1][0] = R[k1][0] = R[n1-k1][0],                         a[k1][1] = I[k1][0] = -I[n1-k1][0],                         a[n1-k1][1] = R[k1][n2/2] = R[n1-k1][n2/2],                         a[n1-k1][0] = -I[k1][n2/2] = I[n1-k1][n2/2],                             0<k1<n1/2,                         a[0][0] = R[0][0],                         a[0][1] = R[0][n2/2],                         a[n1/2][0] = R[n1/2][0],                         a[n1/2][1] = R[n1/2][n2/2]                <case2>                    input data                        a[j1][2*j2] = R[j1][j2] = R[n1-j1][n2-j2],                         a[j1][2*j2+1] = I[j1][j2] = -I[n1-j1][n2-j2],                             0<j1<n1, 0<j2<n2/2,                         a[0][2*j2] = R[0][j2] = R[0][n2-j2],                         a[0][2*j2+1] = I[0][j2] = -I[0][n2-j2],                             0<j2<n2/2,                         a[j1][0] = R[j1][0] = R[n1-j1][0],                         a[j1][1] = I[j1][0] = -I[n1-j1][0],                         a[n1-j1][1] = R[j1][n2/2] = R[n1-j1][n2/2],                         a[n1-j1][0] = -I[j1][n2/2] = I[n1-j1][n2/2],                             0<j1<n1/2,                         a[0][0] = R[0][0],                         a[0][1] = R[0][n2/2],                         a[n1/2][0] = R[n1/2][0],                         a[n1/2][1] = R[n1/2][n2/2]        ip[0...*]               :work area for bit reversal (int *)                length of ip >= 2+sqrt(n)                (n = max(n1, n2/2))                ip[0],ip[1] are pointers of the cos/sin table.        w[0...*]               :cos/sin table (double *)                length of w >= max(n1/2, n2/4) + n2/4                w[],ip[] are initialized if ip[0] == 0.    [remark]        Inverse of             rdft2d(n1, n2, 1, a, ip, w);        is             rdft2d(n1, n2, -1, a, ip, w);            for (j1 = 0; j1 <= n1 - 1; j1++) {                for (j2 = 0; j2 <= n2 - 1; j2++) {                    a[j1][j2] *= 2.0 / (n1 * n2);                }            }        .-------- DCT (Discrete Cosine Transform) / Inverse of DCT --------    [definition]        <case1> IDCT (excluding scale)            C[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] *                             cos(pi*j1*(k1+1/2)/n1) *                             cos(pi*j2*(k2+1/2)/n2),                             0<=k1<n1, 0<=k2<n2        <case2> DCT            C[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] *                             cos(pi*(j1+1/2)*k1/n1) *                             cos(pi*(j2+1/2)*k2/n2),                             0<=k1<n1, 0<=k2<n2    [usage]        <case1>            ip[0] = 0; // first time only            ddct2d(n1, n2, 1, a, t, ip, w);        <case2>            ip[0] = 0; // first time only            ddct2d(n1, n2, -1, a, t, ip, w);    [parameters]        n1     :data length (int)                n1 >= 2, n1 = power of 2        n2     :data length (int)                n2 >= 2, n2 = power of 2        a[0...n1-1][0...n2-1]               :input/output data (double **)                output data                    a[k1][k2] = C[k1][k2], 0<=k1<n1, 0<=k2<n2        t[0...n1-1][0...n2-1]               :work area (double **)        ip[0...*]               :work area for bit reversal (int *)                length of ip >= 2+sqrt(n)                (n = max(n1, n2/2))                ip[0],ip[1] are pointers of the cos/sin table.        w[0...*]               :cos/sin table (double *)                length of w >= max(n1/2, n2/4) + max(n1, n2)                w[],ip[] are initialized if ip[0] == 0.    [remark]        Inverse of             ddct2d(n1, n2, -1, a, t, ip, w);        is             for (j1 = 0; j1 <= n1 - 1; j1++) {                a[j1][0] *= 0.5;            }            for (j2 = 0; j2 <= n2 - 1; j2++) {                a[0][j2] *= 0.5;            }            ddct2d(n1, n2, 1, a, t, ip, w);            for (j1 = 0; j1 <= n1 - 1; j1++) {                for (j2 = 0; j2 <= n2 - 1; j2++) {                    a[j1][j2] *= 4.0 / (n1 * n2);                }            }        .-------- DST (Discrete Sine Transform) / Inverse of DST --------    [definition]        <case1> IDST (excluding scale)            S[k1][k2] = sum_j1=1^n1 sum_j2=1^n2 A[j1][j2] *                             sin(pi*j1*(k1+1/2)/n1) *                             sin(pi*j2*(k2+1/2)/n2),                             0<=k1<n1, 0<=k2<n2        <case2> DST            S[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] *                             sin(pi*(j1+1/2)*k1/n1) *                             sin(pi*(j2+1/2)*k2/n2),                             0<k1<=n1, 0<k2<=n2    [usage]        <case1>            ip[0] = 0; // first time only            ddst2d(n1, n2, 1, a, t, ip, w);        <case2>            ip[0] = 0; // first time only            ddst2d(n1, n2, -1, a, t, ip, w);    [parameters]        n1     :data length (int)                n1 >= 2, n1 = power of 2        n2     :data length (int)                n2 >= 2, n2 = power of 2        a[0...n1-1][0...n2-1]               :input/output data (double **)                <case1>                    input data                        a[j1][j2] = A[j1][j2], 0<j1<n1, 0<j2<n2,                         a[j1][0] = A[j1][n2], 0<j1<n1,                         a[0][j2] = A[n1][j2], 0<j2<n2,                         a[0][0] = A[n1][n2]                        (i.e. A[j1][j2] = a[j1 % n1][j2 % n2])                    output data                        a[k1][k2] = S[k1][k2], 0<=k1<n1, 0<=k2<n2                <case2>                    output data                        a[k1][k2] = S[k1][k2], 0<k1<n1, 0<k2<n2,                         a[k1][0] = S[k1][n2], 0<k1<n1,                         a[0][k2] = S[n1][k2], 0<k2<n2,                         a[0][0] = S[n1][n2]                        (i.e. S[k1][k2] = a[k1 % n1][k2 % n2])        t[0...n1-1][0...n2-1]               :work area (double **)        ip[0...*]               :work area for bit reversal (int *)                length of ip >= 2+sqrt(n)                (n = max(n1, n2/2))                ip[0],ip[1] are pointers of the cos/sin table.        w[0...*]               :cos/sin table (double *)                length of w >= max(n1/2, n2/4) + max(n1, n2)                w[],ip[] are initialized if ip[0] == 0.    [remark]        Inverse of             ddst2d(n1, n2, -1, a, t, ip, w);        is             for (j1 = 0; j1 <= n1 - 1; j1++) {                a[j1][0] *= 0.5;            }            for (j2 = 0; j2 <= n2 - 1; j2++) {                a[0][j2] *= 0.5;            }            ddst2d(n1, n2, 1, a, t, ip, w);            for (j1 = 0; j1 <= n1 - 1; j1++) {                for (j2 = 0; j2 <= n2 - 1; j2++) {                    a[j1][j2] *= 4.0 / (n1 * n2);                }            }        .*/void cdft2d(int n1, int n2, int isgn, double **a, int *ip, double *w){    void makewt(int nw, int *ip, double *w);    void bitrv2col(int n1, int n, int *ip, double **a);    void bitrv2row(int n, int n2, int *ip, double **a);    void cftbcol(int n1, int n, double **a, double *w);    void cftbrow(int n, int n2, double **a, double *w);    void cftfcol(int n1, int n, double **a, double *w);    void cftfrow(int n, int n2, double **a, double *w);    int n;        n = n1 << 1;    if (n < n2) {        n = n2;    }    if (n > (ip[0] << 2)) {        makewt(n >> 2, ip, w);    }    if (n2 > 4) {        bitrv2col(n1, n2, ip + 2, a);    }    if (n1 > 2) {        bitrv2row(n1, n2, ip + 2, a);    }    if (isgn < 0) {        cftfcol(n1, n2, a, w);        cftfrow(n1, n2, a, w);    } else {        cftbcol(n1, n2, a, w);        cftbrow(n1, n2, a, w);    }}void rdft2d(int n1, int n2, int isgn, double **a, int *ip, double *w){    void makewt(int nw, int *ip, double *w);    void makect(int nc, int *ip, double *c);    void bitrv2col(int n1, int n, int *ip, double **a);    void bitrv2row(int n, int n2, int *ip, double **a);    void cftbcol(int n1, int n, double **a, double *w);    void cftbrow(int n, int n2, double **a, double *w);    void cftfcol(int n1, int n, double **a, double *w);    void cftfrow(int n, int n2, double **a, double *w);    void rftbcol(int n1, int n, double **a, int nc, double *c);    void rftfcol(int n1, int n, double **a, int nc, double *c);    int n, nw, nc, n1h, i, j;    double xi;        n = n1 << 1;    if (n < n2) {        n = n2;    }    nw = ip[0];    if (n > (nw << 2)) {        nw = n >> 2;        makewt(nw, ip, w);    }    nc = ip[1];    if (n2 > (nc << 2)) {        nc = n2 >> 2;        makect(nc, ip, w + nw);    }    n1h = n1 >> 1;    if (isgn < 0) {        for (i = 1; i <= n1h - 1; i++) {            j = n1 - i;            xi = a[i][0] - a[j][0];            a[i][0] += a[j][0];            a[j][0] = xi;            xi = a[j][1] - a[i][1];            a[i][1] += a[j][1];            a[j][1] = xi;        }        if (n1 > 2) {            bitrv2row(n1, n2, ip + 2, a);        }        cftfrow(n1, n2, a, w);        for (i = 0; i <= n1 - 1; i++) {            a[i][1] = 0.5 * (a[i][0] - a[i][1]);            a[i][0] -= a[i][1];        }        if (n2 > 4) {            rftfcol(n1, n2, a, nc, w + nw);            bitrv2col(n1, n2, ip + 2, a);        }        cftfcol(n1, n2, a, w);    } else {        if (n2 > 4) {            bitrv2col(n1, n2, ip + 2, a);        }        cftbcol(n1, n2, a, w);        if (n2 > 4) {            rftbcol(n1, n2, a, nc, w + nw);        }        for (i = 0; i <= n1 - 1; i++) {            xi = a[i][0] - a[i][1];            a[i][0] += a[i][1];            a[i][1] = xi;        }        if (n1 > 2) {            bitrv2row(n1, n2, ip + 2, a);        }        cftbrow(n1, n2, a, w);        for (i = 1; i <= n1h - 1; i++) {            j = n1 - i;            a[j][0] = 0.5 * (a[i][0] - a[j][0]);            a[i][0] -= a[j][0];            a[j][1] = 0.5 * (a[i][1] + a[j][1]);            a[i][1] -= a[j][1];        }    }}void ddct2d(int n1, int n2, int isgn, double **a, double **t,     int *ip, double *w){    void makewt(int nw, int *ip, double *w);    void makect(int nc, int *ip, double *c);    void bitrv2col(int n1, int n, int *ip, double **a);    void bitrv2row(int n, int n2, int *ip, double **a);    void cftbcol(int n1, int n, double **a, double *w);    void cftbrow(int n, int n2, double **a, double *w);    void cftfcol(int n1, int n, double **a, double *w);    void cftfrow(int n, int n2, double **a, double *w);    void rftbcol(int n1, int n, double **a, int nc, double *c);    void rftfcol(int n1, int n, double **a, int nc, double *c);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -