⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fftsg2d.c

📁 2维fft程序
💻 C
📖 第 1 页 / 共 3 页
字号:
/*Fast Fourier/Cosine/Sine Transform    dimension   :two    data length :power of 2    decimation  :frequency    radix       :split-radix, row-column    data        :inplace    table       :usefunctions    cdft2d: Complex Discrete Fourier Transform    rdft2d: Real Discrete Fourier Transform    ddct2d: Discrete Cosine Transform    ddst2d: Discrete Sine Transformfunction prototypes    void cdft2d(int, int, int, double **, double *, int *, double *);    void rdft2d(int, int, int, double **, double *, int *, double *);    void rdft2dsort(int, int, int, double **);    void ddct2d(int, int, int, double **, double *, int *, double *);    void ddst2d(int, int, int, double **, double *, int *, double *);necessary package    fftsg.c  : 1D-FFT packagemacro definitions    USE_FFT2D_PTHREADS : default=not defined        FFT2D_MAX_THREADS     : must be 2^N, default=4        FFT2D_THREADS_BEGIN_N : default=65536    USE_FFT2D_WINTHREADS : default=not defined        FFT2D_MAX_THREADS     : must be 2^N, default=4        FFT2D_THREADS_BEGIN_N : default=131072-------- Complex DFT (Discrete Fourier Transform) --------    [definition]        <case1>            X[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 x[j1][j2] *                             exp(2*pi*i*j1*k1/n1) *                             exp(2*pi*i*j2*k2/n2), 0<=k1<n1, 0<=k2<n2        <case2>            X[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 x[j1][j2] *                             exp(-2*pi*i*j1*k1/n1) *                             exp(-2*pi*i*j2*k2/n2), 0<=k1<n1, 0<=k2<n2        (notes: sum_j=0^n-1 is a summation from j=0 to n-1)    [usage]        <case1>            ip[0] = 0; // first time only            cdft2d(n1, 2*n2, 1, a, t, ip, w);        <case2>            ip[0] = 0; // first time only            cdft2d(n1, 2*n2, -1, a, t, ip, w);    [parameters]        n1     :data length (int)                n1 >= 1, n1 = power of 2        2*n2   :data length (int)                n2 >= 1, n2 = power of 2        a[0...n1-1][0...2*n2-1]               :input/output data (double **)                input data                    a[j1][2*j2] = Re(x[j1][j2]),                     a[j1][2*j2+1] = Im(x[j1][j2]),                     0<=j1<n1, 0<=j2<n2                output data                    a[k1][2*k2] = Re(X[k1][k2]),                     a[k1][2*k2+1] = Im(X[k1][k2]),                     0<=k1<n1, 0<=k2<n2        t[0...*]               :work area (double *)                length of t >= 8*n1,                   if single thread,                 length of t >= 8*n1*FFT2D_MAX_THREADS, if multi threads,                 t is dynamically allocated, if t == NULL.        ip[0...*]               :work area for bit reversal (int *)                length of ip >= 2+sqrt(n)                (n = max(n1, n2))                ip[0],ip[1] are pointers of the cos/sin table.        w[0...*]               :cos/sin table (double *)                length of w >= max(n1/2, n2/2)                w[],ip[] are initialized if ip[0] == 0.    [remark]        Inverse of             cdft2d(n1, 2*n2, -1, a, t, ip, w);        is             cdft2d(n1, 2*n2, 1, a, t, ip, w);            for (j1 = 0; j1 <= n1 - 1; j1++) {                for (j2 = 0; j2 <= 2 * n2 - 1; j2++) {                    a[j1][j2] *= 1.0 / n1 / n2;                }            }        .-------- Real DFT / Inverse of Real DFT --------    [definition]        <case1> RDFT            R[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] *                             cos(2*pi*j1*k1/n1 + 2*pi*j2*k2/n2),                             0<=k1<n1, 0<=k2<n2            I[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] *                             sin(2*pi*j1*k1/n1 + 2*pi*j2*k2/n2),                             0<=k1<n1, 0<=k2<n2        <case2> IRDFT (excluding scale)            a[k1][k2] = (1/2) * sum_j1=0^n1-1 sum_j2=0^n2-1                            (R[j1][j2] *                             cos(2*pi*j1*k1/n1 + 2*pi*j2*k2/n2) +                             I[j1][j2] *                             sin(2*pi*j1*k1/n1 + 2*pi*j2*k2/n2)),                             0<=k1<n1, 0<=k2<n2        (notes: R[n1-k1][n2-k2] = R[k1][k2],                 I[n1-k1][n2-k2] = -I[k1][k2],                 R[n1-k1][0] = R[k1][0],                 I[n1-k1][0] = -I[k1][0],                 R[0][n2-k2] = R[0][k2],                 I[0][n2-k2] = -I[0][k2],                 0<k1<n1, 0<k2<n2)    [usage]        <case1>            ip[0] = 0; // first time only            rdft2d(n1, n2, 1, a, t, ip, w);        <case2>            ip[0] = 0; // first time only            rdft2d(n1, n2, -1, a, t, ip, w);    [parameters]        n1     :data length (int)                n1 >= 2, n1 = power of 2        n2     :data length (int)                n2 >= 2, n2 = power of 2        a[0...n1-1][0...n2-1]               :input/output data (double **)                <case1>                    output data                        a[k1][2*k2] = R[k1][k2] = R[n1-k1][n2-k2],                         a[k1][2*k2+1] = I[k1][k2] = -I[n1-k1][n2-k2],                             0<k1<n1, 0<k2<n2/2,                         a[0][2*k2] = R[0][k2] = R[0][n2-k2],                         a[0][2*k2+1] = I[0][k2] = -I[0][n2-k2],                             0<k2<n2/2,                         a[k1][0] = R[k1][0] = R[n1-k1][0],                         a[k1][1] = I[k1][0] = -I[n1-k1][0],                         a[n1-k1][1] = R[k1][n2/2] = R[n1-k1][n2/2],                         a[n1-k1][0] = -I[k1][n2/2] = I[n1-k1][n2/2],                             0<k1<n1/2,                         a[0][0] = R[0][0],                         a[0][1] = R[0][n2/2],                         a[n1/2][0] = R[n1/2][0],                         a[n1/2][1] = R[n1/2][n2/2]                <case2>                    input data                        a[j1][2*j2] = R[j1][j2] = R[n1-j1][n2-j2],                         a[j1][2*j2+1] = I[j1][j2] = -I[n1-j1][n2-j2],                             0<j1<n1, 0<j2<n2/2,                         a[0][2*j2] = R[0][j2] = R[0][n2-j2],                         a[0][2*j2+1] = I[0][j2] = -I[0][n2-j2],                             0<j2<n2/2,                         a[j1][0] = R[j1][0] = R[n1-j1][0],                         a[j1][1] = I[j1][0] = -I[n1-j1][0],                         a[n1-j1][1] = R[j1][n2/2] = R[n1-j1][n2/2],                         a[n1-j1][0] = -I[j1][n2/2] = I[n1-j1][n2/2],                             0<j1<n1/2,                         a[0][0] = R[0][0],                         a[0][1] = R[0][n2/2],                         a[n1/2][0] = R[n1/2][0],                         a[n1/2][1] = R[n1/2][n2/2]                ---- output ordering ----                    rdft2d(n1, n2, 1, a, t, ip, w);                    rdft2dsort(n1, n2, 1, a);                    // stored data is a[0...n1-1][0...n2+1]:                    // a[k1][2*k2] = R[k1][k2],                     // a[k1][2*k2+1] = I[k1][k2],                     // 0<=k1<n1, 0<=k2<=n2/2.                    // the stored data is larger than the input data!                ---- input ordering ----                    rdft2dsort(n1, n2, -1, a);                    rdft2d(n1, n2, -1, a, t, ip, w);        t[0...*]               :work area (double *)                length of t >= 8*n1,                   if single thread,                 length of t >= 8*n1*FFT2D_MAX_THREADS, if multi threads,                 t is dynamically allocated, if t == NULL.        ip[0...*]               :work area for bit reversal (int *)                length of ip >= 2+sqrt(n)                (n = max(n1, n2/2))                ip[0],ip[1] are pointers of the cos/sin table.        w[0...*]               :cos/sin table (double *)                length of w >= max(n1/2, n2/4) + n2/4                w[],ip[] are initialized if ip[0] == 0.    [remark]        Inverse of             rdft2d(n1, n2, 1, a, t, ip, w);        is             rdft2d(n1, n2, -1, a, t, ip, w);            for (j1 = 0; j1 <= n1 - 1; j1++) {                for (j2 = 0; j2 <= n2 - 1; j2++) {                    a[j1][j2] *= 2.0 / n1 / n2;                }            }        .-------- DCT (Discrete Cosine Transform) / Inverse of DCT --------    [definition]        <case1> IDCT (excluding scale)            C[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] *                             cos(pi*j1*(k1+1/2)/n1) *                             cos(pi*j2*(k2+1/2)/n2),                             0<=k1<n1, 0<=k2<n2        <case2> DCT            C[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] *                             cos(pi*(j1+1/2)*k1/n1) *                             cos(pi*(j2+1/2)*k2/n2),                             0<=k1<n1, 0<=k2<n2    [usage]        <case1>            ip[0] = 0; // first time only            ddct2d(n1, n2, 1, a, t, ip, w);        <case2>            ip[0] = 0; // first time only            ddct2d(n1, n2, -1, a, t, ip, w);    [parameters]        n1     :data length (int)                n1 >= 2, n1 = power of 2        n2     :data length (int)                n2 >= 2, n2 = power of 2        a[0...n1-1][0...n2-1]               :input/output data (double **)                output data                    a[k1][k2] = C[k1][k2], 0<=k1<n1, 0<=k2<n2        t[0...*]               :work area (double *)                length of t >= 4*n1,                   if single thread,                 length of t >= 4*n1*FFT2D_MAX_THREADS, if multi threads,                 t is dynamically allocated, if t == NULL.        ip[0...*]               :work area for bit reversal (int *)                length of ip >= 2+sqrt(n)                (n = max(n1/2, n2/2))                ip[0],ip[1] are pointers of the cos/sin table.        w[0...*]               :cos/sin table (double *)                length of w >= max(n1*3/2, n2*3/2)                w[],ip[] are initialized if ip[0] == 0.    [remark]        Inverse of             ddct2d(n1, n2, -1, a, t, ip, w);        is             for (j1 = 0; j1 <= n1 - 1; j1++) {                a[j1][0] *= 0.5;            }            for (j2 = 0; j2 <= n2 - 1; j2++) {                a[0][j2] *= 0.5;            }            ddct2d(n1, n2, 1, a, t, ip, w);            for (j1 = 0; j1 <= n1 - 1; j1++) {                for (j2 = 0; j2 <= n2 - 1; j2++) {                    a[j1][j2] *= 4.0 / n1 / n2;                }            }        .-------- DST (Discrete Sine Transform) / Inverse of DST --------    [definition]        <case1> IDST (excluding scale)            S[k1][k2] = sum_j1=1^n1 sum_j2=1^n2 A[j1][j2] *                             sin(pi*j1*(k1+1/2)/n1) *                             sin(pi*j2*(k2+1/2)/n2),                             0<=k1<n1, 0<=k2<n2        <case2> DST            S[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] *                             sin(pi*(j1+1/2)*k1/n1) *                             sin(pi*(j2+1/2)*k2/n2),                             0<k1<=n1, 0<k2<=n2    [usage]        <case1>            ip[0] = 0; // first time only            ddst2d(n1, n2, 1, a, t, ip, w);        <case2>            ip[0] = 0; // first time only            ddst2d(n1, n2, -1, a, t, ip, w);    [parameters]        n1     :data length (int)                n1 >= 2, n1 = power of 2        n2     :data length (int)                n2 >= 2, n2 = power of 2        a[0...n1-1][0...n2-1]               :input/output data (double **)                <case1>                    input data                        a[j1][j2] = A[j1][j2], 0<j1<n1, 0<j2<n2,                         a[j1][0] = A[j1][n2], 0<j1<n1,                         a[0][j2] = A[n1][j2], 0<j2<n2,                         a[0][0] = A[n1][n2]                        (i.e. A[j1][j2] = a[j1 % n1][j2 % n2])                    output data                        a[k1][k2] = S[k1][k2], 0<=k1<n1, 0<=k2<n2                <case2>                    output data                        a[k1][k2] = S[k1][k2], 0<k1<n1, 0<k2<n2,                         a[k1][0] = S[k1][n2], 0<k1<n1,                         a[0][k2] = S[n1][k2], 0<k2<n2,                         a[0][0] = S[n1][n2]                        (i.e. S[k1][k2] = a[k1 % n1][k2 % n2])        t[0...*]               :work area (double *)                length of t >= 4*n1,                   if single thread,                 length of t >= 4*n1*FFT2D_MAX_THREADS, if multi threads,                 t is dynamically allocated, if t == NULL.        ip[0...*]               :work area for bit reversal (int *)                length of ip >= 2+sqrt(n)                (n = max(n1/2, n2/2))                ip[0],ip[1] are pointers of the cos/sin table.        w[0...*]               :cos/sin table (double *)                length of w >= max(n1*3/2, n2*3/2)                w[],ip[] are initialized if ip[0] == 0.    [remark]        Inverse of             ddst2d(n1, n2, -1, a, t, ip, w);        is             for (j1 = 0; j1 <= n1 - 1; j1++) {                a[j1][0] *= 0.5;            }            for (j2 = 0; j2 <= n2 - 1; j2++) {                a[0][j2] *= 0.5;            }            ddst2d(n1, n2, 1, a, t, ip, w);            for (j1 = 0; j1 <= n1 - 1; j1++) {                for (j2 = 0; j2 <= n2 - 1; j2++) {                    a[j1][j2] *= 4.0 / n1 / n2;                }            }        .*/#include <stdio.h>#include <stdlib.h>#define fft2d_alloc_error_check(p) { \    if ((p) == NULL) { \        fprintf(stderr, "fft2d memory allocation error\n"); \        exit(1); \    } \}#ifdef USE_FFT2D_PTHREADS#define USE_FFT2D_THREADS#ifndef FFT2D_MAX_THREADS#define FFT2D_MAX_THREADS 4#endif#ifndef FFT2D_THREADS_BEGIN_N#define FFT2D_THREADS_BEGIN_N 65536#endif#include <pthread.h>#define fft2d_thread_t pthread_t#define fft2d_thread_create(thp,func,argp) { \    if (pthread_create(thp, NULL, func, (void *) (argp)) != 0) { \        fprintf(stderr, "fft2d thread error\n"); \        exit(1); \    } \}#define fft2d_thread_wait(th) { \    if (pthread_join(th, NULL) != 0) { \        fprintf(stderr, "fft2d thread error\n"); \        exit(1); \    } \}#endif /* USE_FFT2D_PTHREADS */#ifdef USE_FFT2D_WINTHREADS#define USE_FFT2D_THREADS#ifndef FFT2D_MAX_THREADS#define FFT2D_MAX_THREADS 4#endif#ifndef FFT2D_THREADS_BEGIN_N#define FFT2D_THREADS_BEGIN_N 131072#endif#include <windows.h>#define fft2d_thread_t HANDLE#define fft2d_thread_create(thp,func,argp) { \    DWORD thid; \    *(thp) = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) (func), (LPVOID) (argp), 0, &thid); \    if (*(thp) == 0) { \        fprintf(stderr, "fft2d thread error\n"); \        exit(1); \    } \}#define fft2d_thread_wait(th) { \    WaitForSingleObject(th, INFINITE); \    CloseHandle(th); \}#endif /* USE_FFT2D_WINTHREADS */void cdft2d(int n1, int n2, int isgn, double **a, double *t, 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -