📄 fftsg2d.c
字号:
/*Fast Fourier/Cosine/Sine Transform dimension :two data length :power of 2 decimation :frequency radix :split-radix, row-column data :inplace table :usefunctions cdft2d: Complex Discrete Fourier Transform rdft2d: Real Discrete Fourier Transform ddct2d: Discrete Cosine Transform ddst2d: Discrete Sine Transformfunction prototypes void cdft2d(int, int, int, double **, double *, int *, double *); void rdft2d(int, int, int, double **, double *, int *, double *); void rdft2dsort(int, int, int, double **); void ddct2d(int, int, int, double **, double *, int *, double *); void ddst2d(int, int, int, double **, double *, int *, double *);necessary package fftsg.c : 1D-FFT packagemacro definitions USE_FFT2D_PTHREADS : default=not defined FFT2D_MAX_THREADS : must be 2^N, default=4 FFT2D_THREADS_BEGIN_N : default=65536 USE_FFT2D_WINTHREADS : default=not defined FFT2D_MAX_THREADS : must be 2^N, default=4 FFT2D_THREADS_BEGIN_N : default=131072-------- Complex DFT (Discrete Fourier Transform) -------- [definition] <case1> X[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 x[j1][j2] * exp(2*pi*i*j1*k1/n1) * exp(2*pi*i*j2*k2/n2), 0<=k1<n1, 0<=k2<n2 <case2> X[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 x[j1][j2] * exp(-2*pi*i*j1*k1/n1) * exp(-2*pi*i*j2*k2/n2), 0<=k1<n1, 0<=k2<n2 (notes: sum_j=0^n-1 is a summation from j=0 to n-1) [usage] <case1> ip[0] = 0; // first time only cdft2d(n1, 2*n2, 1, a, t, ip, w); <case2> ip[0] = 0; // first time only cdft2d(n1, 2*n2, -1, a, t, ip, w); [parameters] n1 :data length (int) n1 >= 1, n1 = power of 2 2*n2 :data length (int) n2 >= 1, n2 = power of 2 a[0...n1-1][0...2*n2-1] :input/output data (double **) input data a[j1][2*j2] = Re(x[j1][j2]), a[j1][2*j2+1] = Im(x[j1][j2]), 0<=j1<n1, 0<=j2<n2 output data a[k1][2*k2] = Re(X[k1][k2]), a[k1][2*k2+1] = Im(X[k1][k2]), 0<=k1<n1, 0<=k2<n2 t[0...*] :work area (double *) length of t >= 8*n1, if single thread, length of t >= 8*n1*FFT2D_MAX_THREADS, if multi threads, t is dynamically allocated, if t == NULL. ip[0...*] :work area for bit reversal (int *) length of ip >= 2+sqrt(n) (n = max(n1, n2)) ip[0],ip[1] are pointers of the cos/sin table. w[0...*] :cos/sin table (double *) length of w >= max(n1/2, n2/2) w[],ip[] are initialized if ip[0] == 0. [remark] Inverse of cdft2d(n1, 2*n2, -1, a, t, ip, w); is cdft2d(n1, 2*n2, 1, a, t, ip, w); for (j1 = 0; j1 <= n1 - 1; j1++) { for (j2 = 0; j2 <= 2 * n2 - 1; j2++) { a[j1][j2] *= 1.0 / n1 / n2; } } .-------- Real DFT / Inverse of Real DFT -------- [definition] <case1> RDFT R[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] * cos(2*pi*j1*k1/n1 + 2*pi*j2*k2/n2), 0<=k1<n1, 0<=k2<n2 I[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] * sin(2*pi*j1*k1/n1 + 2*pi*j2*k2/n2), 0<=k1<n1, 0<=k2<n2 <case2> IRDFT (excluding scale) a[k1][k2] = (1/2) * sum_j1=0^n1-1 sum_j2=0^n2-1 (R[j1][j2] * cos(2*pi*j1*k1/n1 + 2*pi*j2*k2/n2) + I[j1][j2] * sin(2*pi*j1*k1/n1 + 2*pi*j2*k2/n2)), 0<=k1<n1, 0<=k2<n2 (notes: R[n1-k1][n2-k2] = R[k1][k2], I[n1-k1][n2-k2] = -I[k1][k2], R[n1-k1][0] = R[k1][0], I[n1-k1][0] = -I[k1][0], R[0][n2-k2] = R[0][k2], I[0][n2-k2] = -I[0][k2], 0<k1<n1, 0<k2<n2) [usage] <case1> ip[0] = 0; // first time only rdft2d(n1, n2, 1, a, t, ip, w); <case2> ip[0] = 0; // first time only rdft2d(n1, n2, -1, a, t, ip, w); [parameters] n1 :data length (int) n1 >= 2, n1 = power of 2 n2 :data length (int) n2 >= 2, n2 = power of 2 a[0...n1-1][0...n2-1] :input/output data (double **) <case1> output data a[k1][2*k2] = R[k1][k2] = R[n1-k1][n2-k2], a[k1][2*k2+1] = I[k1][k2] = -I[n1-k1][n2-k2], 0<k1<n1, 0<k2<n2/2, a[0][2*k2] = R[0][k2] = R[0][n2-k2], a[0][2*k2+1] = I[0][k2] = -I[0][n2-k2], 0<k2<n2/2, a[k1][0] = R[k1][0] = R[n1-k1][0], a[k1][1] = I[k1][0] = -I[n1-k1][0], a[n1-k1][1] = R[k1][n2/2] = R[n1-k1][n2/2], a[n1-k1][0] = -I[k1][n2/2] = I[n1-k1][n2/2], 0<k1<n1/2, a[0][0] = R[0][0], a[0][1] = R[0][n2/2], a[n1/2][0] = R[n1/2][0], a[n1/2][1] = R[n1/2][n2/2] <case2> input data a[j1][2*j2] = R[j1][j2] = R[n1-j1][n2-j2], a[j1][2*j2+1] = I[j1][j2] = -I[n1-j1][n2-j2], 0<j1<n1, 0<j2<n2/2, a[0][2*j2] = R[0][j2] = R[0][n2-j2], a[0][2*j2+1] = I[0][j2] = -I[0][n2-j2], 0<j2<n2/2, a[j1][0] = R[j1][0] = R[n1-j1][0], a[j1][1] = I[j1][0] = -I[n1-j1][0], a[n1-j1][1] = R[j1][n2/2] = R[n1-j1][n2/2], a[n1-j1][0] = -I[j1][n2/2] = I[n1-j1][n2/2], 0<j1<n1/2, a[0][0] = R[0][0], a[0][1] = R[0][n2/2], a[n1/2][0] = R[n1/2][0], a[n1/2][1] = R[n1/2][n2/2] ---- output ordering ---- rdft2d(n1, n2, 1, a, t, ip, w); rdft2dsort(n1, n2, 1, a); // stored data is a[0...n1-1][0...n2+1]: // a[k1][2*k2] = R[k1][k2], // a[k1][2*k2+1] = I[k1][k2], // 0<=k1<n1, 0<=k2<=n2/2. // the stored data is larger than the input data! ---- input ordering ---- rdft2dsort(n1, n2, -1, a); rdft2d(n1, n2, -1, a, t, ip, w); t[0...*] :work area (double *) length of t >= 8*n1, if single thread, length of t >= 8*n1*FFT2D_MAX_THREADS, if multi threads, t is dynamically allocated, if t == NULL. ip[0...*] :work area for bit reversal (int *) length of ip >= 2+sqrt(n) (n = max(n1, n2/2)) ip[0],ip[1] are pointers of the cos/sin table. w[0...*] :cos/sin table (double *) length of w >= max(n1/2, n2/4) + n2/4 w[],ip[] are initialized if ip[0] == 0. [remark] Inverse of rdft2d(n1, n2, 1, a, t, ip, w); is rdft2d(n1, n2, -1, a, t, ip, w); for (j1 = 0; j1 <= n1 - 1; j1++) { for (j2 = 0; j2 <= n2 - 1; j2++) { a[j1][j2] *= 2.0 / n1 / n2; } } .-------- DCT (Discrete Cosine Transform) / Inverse of DCT -------- [definition] <case1> IDCT (excluding scale) C[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] * cos(pi*j1*(k1+1/2)/n1) * cos(pi*j2*(k2+1/2)/n2), 0<=k1<n1, 0<=k2<n2 <case2> DCT C[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] * cos(pi*(j1+1/2)*k1/n1) * cos(pi*(j2+1/2)*k2/n2), 0<=k1<n1, 0<=k2<n2 [usage] <case1> ip[0] = 0; // first time only ddct2d(n1, n2, 1, a, t, ip, w); <case2> ip[0] = 0; // first time only ddct2d(n1, n2, -1, a, t, ip, w); [parameters] n1 :data length (int) n1 >= 2, n1 = power of 2 n2 :data length (int) n2 >= 2, n2 = power of 2 a[0...n1-1][0...n2-1] :input/output data (double **) output data a[k1][k2] = C[k1][k2], 0<=k1<n1, 0<=k2<n2 t[0...*] :work area (double *) length of t >= 4*n1, if single thread, length of t >= 4*n1*FFT2D_MAX_THREADS, if multi threads, t is dynamically allocated, if t == NULL. ip[0...*] :work area for bit reversal (int *) length of ip >= 2+sqrt(n) (n = max(n1/2, n2/2)) ip[0],ip[1] are pointers of the cos/sin table. w[0...*] :cos/sin table (double *) length of w >= max(n1*3/2, n2*3/2) w[],ip[] are initialized if ip[0] == 0. [remark] Inverse of ddct2d(n1, n2, -1, a, t, ip, w); is for (j1 = 0; j1 <= n1 - 1; j1++) { a[j1][0] *= 0.5; } for (j2 = 0; j2 <= n2 - 1; j2++) { a[0][j2] *= 0.5; } ddct2d(n1, n2, 1, a, t, ip, w); for (j1 = 0; j1 <= n1 - 1; j1++) { for (j2 = 0; j2 <= n2 - 1; j2++) { a[j1][j2] *= 4.0 / n1 / n2; } } .-------- DST (Discrete Sine Transform) / Inverse of DST -------- [definition] <case1> IDST (excluding scale) S[k1][k2] = sum_j1=1^n1 sum_j2=1^n2 A[j1][j2] * sin(pi*j1*(k1+1/2)/n1) * sin(pi*j2*(k2+1/2)/n2), 0<=k1<n1, 0<=k2<n2 <case2> DST S[k1][k2] = sum_j1=0^n1-1 sum_j2=0^n2-1 a[j1][j2] * sin(pi*(j1+1/2)*k1/n1) * sin(pi*(j2+1/2)*k2/n2), 0<k1<=n1, 0<k2<=n2 [usage] <case1> ip[0] = 0; // first time only ddst2d(n1, n2, 1, a, t, ip, w); <case2> ip[0] = 0; // first time only ddst2d(n1, n2, -1, a, t, ip, w); [parameters] n1 :data length (int) n1 >= 2, n1 = power of 2 n2 :data length (int) n2 >= 2, n2 = power of 2 a[0...n1-1][0...n2-1] :input/output data (double **) <case1> input data a[j1][j2] = A[j1][j2], 0<j1<n1, 0<j2<n2, a[j1][0] = A[j1][n2], 0<j1<n1, a[0][j2] = A[n1][j2], 0<j2<n2, a[0][0] = A[n1][n2] (i.e. A[j1][j2] = a[j1 % n1][j2 % n2]) output data a[k1][k2] = S[k1][k2], 0<=k1<n1, 0<=k2<n2 <case2> output data a[k1][k2] = S[k1][k2], 0<k1<n1, 0<k2<n2, a[k1][0] = S[k1][n2], 0<k1<n1, a[0][k2] = S[n1][k2], 0<k2<n2, a[0][0] = S[n1][n2] (i.e. S[k1][k2] = a[k1 % n1][k2 % n2]) t[0...*] :work area (double *) length of t >= 4*n1, if single thread, length of t >= 4*n1*FFT2D_MAX_THREADS, if multi threads, t is dynamically allocated, if t == NULL. ip[0...*] :work area for bit reversal (int *) length of ip >= 2+sqrt(n) (n = max(n1/2, n2/2)) ip[0],ip[1] are pointers of the cos/sin table. w[0...*] :cos/sin table (double *) length of w >= max(n1*3/2, n2*3/2) w[],ip[] are initialized if ip[0] == 0. [remark] Inverse of ddst2d(n1, n2, -1, a, t, ip, w); is for (j1 = 0; j1 <= n1 - 1; j1++) { a[j1][0] *= 0.5; } for (j2 = 0; j2 <= n2 - 1; j2++) { a[0][j2] *= 0.5; } ddst2d(n1, n2, 1, a, t, ip, w); for (j1 = 0; j1 <= n1 - 1; j1++) { for (j2 = 0; j2 <= n2 - 1; j2++) { a[j1][j2] *= 4.0 / n1 / n2; } } .*/#include <stdio.h>#include <stdlib.h>#define fft2d_alloc_error_check(p) { \ if ((p) == NULL) { \ fprintf(stderr, "fft2d memory allocation error\n"); \ exit(1); \ } \}#ifdef USE_FFT2D_PTHREADS#define USE_FFT2D_THREADS#ifndef FFT2D_MAX_THREADS#define FFT2D_MAX_THREADS 4#endif#ifndef FFT2D_THREADS_BEGIN_N#define FFT2D_THREADS_BEGIN_N 65536#endif#include <pthread.h>#define fft2d_thread_t pthread_t#define fft2d_thread_create(thp,func,argp) { \ if (pthread_create(thp, NULL, func, (void *) (argp)) != 0) { \ fprintf(stderr, "fft2d thread error\n"); \ exit(1); \ } \}#define fft2d_thread_wait(th) { \ if (pthread_join(th, NULL) != 0) { \ fprintf(stderr, "fft2d thread error\n"); \ exit(1); \ } \}#endif /* USE_FFT2D_PTHREADS */#ifdef USE_FFT2D_WINTHREADS#define USE_FFT2D_THREADS#ifndef FFT2D_MAX_THREADS#define FFT2D_MAX_THREADS 4#endif#ifndef FFT2D_THREADS_BEGIN_N#define FFT2D_THREADS_BEGIN_N 131072#endif#include <windows.h>#define fft2d_thread_t HANDLE#define fft2d_thread_create(thp,func,argp) { \ DWORD thid; \ *(thp) = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) (func), (LPVOID) (argp), 0, &thid); \ if (*(thp) == 0) { \ fprintf(stderr, "fft2d thread error\n"); \ exit(1); \ } \}#define fft2d_thread_wait(th) { \ WaitForSingleObject(th, INFINITE); \ CloseHandle(th); \}#endif /* USE_FFT2D_WINTHREADS */void cdft2d(int n1, int n2, int isgn, double **a, double *t,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -