📄 fftsg.f
字号:
! Fast Fourier/Cosine/Sine Transform! dimension :one! data length :power of 2! decimation :frequency! radix :split-radix! data :inplace! table :use! subroutines! cdft: Complex Discrete Fourier Transform! rdft: Real Discrete Fourier Transform! ddct: Discrete Cosine Transform! ddst: Discrete Sine Transform! dfct: Cosine Transform of RDFT (Real Symmetric DFT)! dfst: Sine Transform of RDFT (Real Anti-symmetric DFT)!!! -------- Complex DFT (Discrete Fourier Transform) --------! [definition]! <case1>! X(k) = sum_j=0^n-1 x(j)*exp(2*pi*i*j*k/n), 0<=k<n! <case2>! X(k) = sum_j=0^n-1 x(j)*exp(-2*pi*i*j*k/n), 0<=k<n! (notes: sum_j=0^n-1 is a summation from j=0 to n-1)! [usage]! <case1>! ip(0) = 0 ! first time only! call cdft(2*n, 1, a, ip, w)! <case2>! ip(0) = 0 ! first time only! call cdft(2*n, -1, a, ip, w)! [parameters]! 2*n :data length (integer)! n >= 1, n = power of 2! a(0:2*n-1) :input/output data (real*8)! input data! a(2*j) = Re(x(j)), ! a(2*j+1) = Im(x(j)), 0<=j<n! output data! a(2*k) = Re(X(k)), ! a(2*k+1) = Im(X(k)), 0<=k<n! ip(0:*) :work area for bit reversal (integer)! length of ip >= 2+sqrt(n)! strictly, ! length of ip >= ! 2+2**(int(log(n+0.5)/log(2.0))/2).! ip(0),ip(1) are pointers of the cos/sin table.! w(0:n/2-1) :cos/sin table (real*8)! w(),ip() are initialized if ip(0) = 0.! [remark]! Inverse of ! call cdft(2*n, -1, a, ip, w)! is ! call cdft(2*n, 1, a, ip, w)! do j = 0, 2 * n - 1! a(j) = a(j) / n! end do! .!!! -------- Real DFT / Inverse of Real DFT --------! [definition]! <case1> RDFT! R(k) = sum_j=0^n-1 a(j)*cos(2*pi*j*k/n), 0<=k<=n/2! I(k) = sum_j=0^n-1 a(j)*sin(2*pi*j*k/n), 0<k<n/2! <case2> IRDFT (excluding scale)! a(k) = (R(0) + R(n/2)*cos(pi*k))/2 + ! sum_j=1^n/2-1 R(j)*cos(2*pi*j*k/n) + ! sum_j=1^n/2-1 I(j)*sin(2*pi*j*k/n), 0<=k<n! [usage]! <case1>! ip(0) = 0 ! first time only! call rdft(n, 1, a, ip, w)! <case2>! ip(0) = 0 ! first time only! call rdft(n, -1, a, ip, w)! [parameters]! n :data length (integer)! n >= 2, n = power of 2! a(0:n-1) :input/output data (real*8)! <case1>! output data! a(2*k) = R(k), 0<=k<n/2! a(2*k+1) = I(k), 0<k<n/2! a(1) = R(n/2)! <case2>! input data! a(2*j) = R(j), 0<=j<n/2! a(2*j+1) = I(j), 0<j<n/2! a(1) = R(n/2)! ip(0:*) :work area for bit reversal (integer)! length of ip >= 2+sqrt(n/2)! strictly, ! length of ip >= ! 2+2**(int(log(n/2+0.5)/log(2.0))/2).! ip(0),ip(1) are pointers of the cos/sin table.! w(0:n/2-1) :cos/sin table (real*8)! w(),ip() are initialized if ip(0) = 0.! [remark]! Inverse of ! call rdft(n, 1, a, ip, w)! is ! call rdft(n, -1, a, ip, w)! do j = 0, n - 1! a(j) = a(j) * 2 / n! end do! .!!! -------- DCT (Discrete Cosine Transform) / Inverse of DCT --------! [definition]! <case1> IDCT (excluding scale)! C(k) = sum_j=0^n-1 a(j)*cos(pi*j*(k+1/2)/n), 0<=k<n! <case2> DCT! C(k) = sum_j=0^n-1 a(j)*cos(pi*(j+1/2)*k/n), 0<=k<n! [usage]! <case1>! ip(0) = 0 ! first time only! call ddct(n, 1, a, ip, w)! <case2>! ip(0) = 0 ! first time only! call ddct(n, -1, a, ip, w)! [parameters]! n :data length (integer)! n >= 2, n = power of 2! a(0:n-1) :input/output data (real*8)! output data! a(k) = C(k), 0<=k<n! ip(0:*) :work area for bit reversal (integer)! length of ip >= 2+sqrt(n/2)! strictly, ! length of ip >= ! 2+2**(int(log(n/2+0.5)/log(2.0))/2).! ip(0),ip(1) are pointers of the cos/sin table.! w(0:n*5/4-1) :cos/sin table (real*8)! w(),ip() are initialized if ip(0) = 0.! [remark]! Inverse of ! call ddct(n, -1, a, ip, w)! is ! a(0) = a(0) / 2! call ddct(n, 1, a, ip, w)! do j = 0, n - 1! a(j) = a(j) * 2 / n! end do! .!!! -------- DST (Discrete Sine Transform) / Inverse of DST --------! [definition]! <case1> IDST (excluding scale)! S(k) = sum_j=1^n A(j)*sin(pi*j*(k+1/2)/n), 0<=k<n! <case2> DST! S(k) = sum_j=0^n-1 a(j)*sin(pi*(j+1/2)*k/n), 0<k<=n! [usage]! <case1>! ip(0) = 0 ! first time only! call ddst(n, 1, a, ip, w)! <case2>! ip(0) = 0 ! first time only! call ddst(n, -1, a, ip, w)! [parameters]! n :data length (integer)! n >= 2, n = power of 2! a(0:n-1) :input/output data (real*8)! <case1>! input data! a(j) = A(j), 0<j<n! a(0) = A(n)! output data! a(k) = S(k), 0<=k<n! <case2>! output data! a(k) = S(k), 0<k<n! a(0) = S(n)! ip(0:*) :work area for bit reversal (integer)! length of ip >= 2+sqrt(n/2)! strictly, ! length of ip >= ! 2+2**(int(log(n/2+0.5)/log(2.0))/2).! ip(0),ip(1) are pointers of the cos/sin table.! w(0:n*5/4-1) :cos/sin table (real*8)! w(),ip() are initialized if ip(0) = 0.! [remark]! Inverse of ! call ddst(n, -1, a, ip, w)! is ! a(0) = a(0) / 2! call ddst(n, 1, a, ip, w)! do j = 0, n - 1! a(j) = a(j) * 2 / n! end do! .!!! -------- Cosine Transform of RDFT (Real Symmetric DFT) --------! [definition]! C(k) = sum_j=0^n a(j)*cos(pi*j*k/n), 0<=k<=n! [usage]! ip(0) = 0 ! first time only! call dfct(n, a, t, ip, w)! [parameters]! n :data length - 1 (integer)! n >= 2, n = power of 2! a(0:n) :input/output data (real*8)! output data! a(k) = C(k), 0<=k<=n! t(0:n/2) :work area (real*8)! ip(0:*) :work area for bit reversal (integer)! length of ip >= 2+sqrt(n/4)! strictly, ! length of ip >= ! 2+2**(int(log(n/4+0.5)/log(2.0))/2).! ip(0),ip(1) are pointers of the cos/sin table.! w(0:n*5/8-1) :cos/sin table (real*8)! w(),ip() are initialized if ip(0) = 0.! [remark]! Inverse of ! a(0) = a(0) / 2! a(n) = a(n) / 2! call dfct(n, a, t, ip, w)! is ! a(0) = a(0) / 2! a(n) = a(n) / 2! call dfct(n, a, t, ip, w)! do j = 0, n! a(j) = a(j) * 2 / n! end do! .!!! -------- Sine Transform of RDFT (Real Anti-symmetric DFT) --------! [definition]! S(k) = sum_j=1^n-1 a(j)*sin(pi*j*k/n), 0<k<n! [usage]! ip(0) = 0 ! first time only! call dfst(n, a, t, ip, w)! [parameters]! n :data length + 1 (integer)! n >= 2, n = power of 2! a(0:n-1) :input/output data (real*8)! output data! a(k) = S(k), 0<k<n! (a(0) is used for work area)! t(0:n/2-1) :work area (real*8)! ip(0:*) :work area for bit reversal (integer)! length of ip >= 2+sqrt(n/4)! strictly, ! length of ip >= ! 2+2**(int(log(n/4+0.5)/log(2.0))/2).! ip(0),ip(1) are pointers of the cos/sin table.! w(0:n*5/8-1) :cos/sin table (real*8)! w(),ip() are initialized if ip(0) = 0.! [remark]! Inverse of ! call dfst(n, a, t, ip, w)! is ! call dfst(n, a, t, ip, w)! do j = 1, n - 1! a(j) = a(j) * 2 / n! end do! .!!! Appendix :! The cos/sin table is recalculated when the larger table required.! w() and ip() are compatible with all routines.!! subroutine cdft(n, isgn, a, ip, w) integer n, isgn, ip(0 : *), nw real*8 a(0 : n - 1), w(0 : *) nw = ip(0) if (n .gt. 4 * nw) then nw = n / 4 call makewt(nw, ip, w) end if if (isgn .ge. 0) then call cftfsub(n, a, ip, nw, w) else call cftbsub(n, a, ip, nw, w) end if end! subroutine rdft(n, isgn, a, ip, w) integer n, isgn, ip(0 : *), nw, nc real*8 a(0 : n - 1), w(0 : *), xi nw = ip(0) if (n .gt. 4 * nw) then nw = n / 4 call makewt(nw, ip, w) end if nc = ip(1) if (n .gt. 4 * nc) then nc = n / 4 call makect(nc, ip, w(nw)) end if if (isgn .ge. 0) then if (n .gt. 4) then call cftfsub(n, a, ip, nw, w) call rftfsub(n, a, nc, w(nw)) else if (n .eq. 4) then call cftfsub(n, a, ip, nw, w) end if xi = a(0) - a(1) a(0) = a(0) + a(1) a(1) = xi else a(1) = 0.5d0 * (a(0) - a(1)) a(0) = a(0) - a(1) if (n .gt. 4) then call rftbsub(n, a, nc, w(nw)) call cftbsub(n, a, ip, nw, w) else if (n .eq. 4) then call cftbsub(n, a, ip, nw, w) end if end if end! subroutine ddct(n, isgn, a, ip, w) integer n, isgn, ip(0 : *), j, nw, nc real*8 a(0 : n - 1), w(0 : *), xr nw = ip(0) if (n .gt. 4 * nw) then nw = n / 4 call makewt(nw, ip, w) end if nc = ip(1) if (n .gt. nc) then nc = n call makect(nc, ip, w(nw)) end if if (isgn .lt. 0) then xr = a(n - 1) do j = n - 2, 2, -2 a(j + 1) = a(j) - a(j - 1) a(j) = a(j) + a(j - 1) end do a(1) = a(0) - xr a(0) = a(0) + xr if (n .gt. 4) then call rftbsub(n, a, nc, w(nw)) call cftbsub(n, a, ip, nw, w) else if (n .eq. 4) then call cftbsub(n, a, ip, nw, w) end if end if call dctsub(n, a, nc, w(nw)) if (isgn .ge. 0) then if (n .gt. 4) then call cftfsub(n, a, ip, nw, w) call rftfsub(n, a, nc, w(nw)) else if (n .eq. 4) then call cftfsub(n, a, ip, nw, w) end if xr = a(0) - a(1) a(0) = a(0) + a(1) do j = 2, n - 2, 2 a(j - 1) = a(j) - a(j + 1) a(j) = a(j) + a(j + 1) end do a(n - 1) = xr end if end! subroutine ddst(n, isgn, a, ip, w) integer n, isgn, ip(0 : *), j, nw, nc real*8 a(0 : n - 1), w(0 : *), xr nw = ip(0) if (n .gt. 4 * nw) then nw = n / 4 call makewt(nw, ip, w) end if nc = ip(1) if (n .gt. nc) then nc = n call makect(nc, ip, w(nw)) end if if (isgn .lt. 0) then xr = a(n - 1) do j = n - 2, 2, -2 a(j + 1) = -a(j) - a(j - 1) a(j) = a(j) - a(j - 1) end do a(1) = a(0) + xr a(0) = a(0) - xr if (n .gt. 4) then call rftbsub(n, a, nc, w(nw)) call cftbsub(n, a, ip, nw, w) else if (n .eq. 4) then call cftbsub(n, a, ip, nw, w) end if end if call dstsub(n, a, nc, w(nw)) if (isgn .ge. 0) then if (n .gt. 4) then call cftfsub(n, a, ip, nw, w) call rftfsub(n, a, nc, w(nw)) else if (n .eq. 4) then call cftfsub(n, a, ip, nw, w) end if xr = a(0) - a(1) a(0) = a(0) + a(1) do j = 2, n - 2, 2 a(j - 1) = -a(j) - a(j + 1) a(j) = a(j) - a(j + 1) end do a(n - 1) = -xr end if end! subroutine dfct(n, a, t, ip, w) integer n, ip(0 : *), j, k, l, m, mh, nw, nc real*8 a(0 : n), t(0 : n / 2), w(0 : *), xr, xi, yr, yi nw = ip(0) if (n .gt. 8 * nw) then nw = n / 8 call makewt(nw, ip, w) end if nc = ip(1) if (n .gt. 2 * nc) then nc = n / 2 call makect(nc, ip, w(nw)) end if m = n / 2 yi = a(m) xi = a(0) + a(n) a(0) = a(0) - a(n) t(0) = xi - yi t(m) = xi + yi if (n .gt. 2) then mh = m / 2 do j = 1, mh - 1 k = m - j xr = a(j) - a(n - j) xi = a(j) + a(n - j)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -