📄 triangulate.cpp
字号:
// GenerateTri1.cpp: implementation of the CTriangulate class.
//
//////////////////////////////////////////////////////////////////////
#include "stdafx.h"
//#include "ct.h"
#include "Triangulate.h"
#include "globalfunctions.h"
#include <math.h>
#include <strstrea.h>
#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[]=__FILE__;
#define new DEBUG_NEW
#endif
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CTriangulate::CTriangulate()
{
nv_ = 0;
ntri_ = 0;
}
CTriangulate::~CTriangulate()
{
delete []pv_;
delete ptri_;
}
/*******************************************************************
Triangulation subroutine
Takes as input NV vertices in array pxyz
Returned is a list of ntri triangular faces in the array v
These triangles are arranged in a consistent clockwise order.
The triangle array 'v' should be malloced to 3 * nv
The vertex array pxyz must be big enough to hold 3 more points
The vertex array must be sorted in increasing x values say
qsort(p,nv,sizeof(XYZ),XYZCompare);
:
int XYZCompare(void *v1,void *v2)
{
XYZ *p1,*p2;
p1 = v1;
p2 = v2;
if (p1->x < p2->x)
return(-1);
else if (p1->x > p2->x)
return(1);
else
return(0);
}
******************************************************************/
int CTriangulate::Triangulate(int nv, XYZ *pxyz, int *ntri, TRIANGLE *v)
// nv为存储在顶点数组pxyz中的顶点的个数
// 返回存储在V中的三角形,其个数由ntri指定
{
int *complete = NULL; //在点已按x轴排序的情况下表示三角形是否需要处理
IEDGE *edges = NULL;
int nedge = 0;
int trimax; // 三角形的最多个数
int emax = 200; //边缓冲区的最大长度,会自然增长。与edges关联
int status = 0; //非0表示错误
int inside;
int i,j,k;
double xp,yp,x1,y1,x2,y2,x3,y3,xc,yc,r; //判断点是否在外接圆内
double xmin,xmax,ymin,ymax,xmid,ymid,dx, dy, dmax; //超级三角形
/* Allocate memory for the completeness list, flag for each triangle */
trimax = 4 * nv;
if ((complete = (int *) malloc(trimax*sizeof(int))) == NULL) {
status = 1;
goto skip;
}
/* Allocate memory for the edge list */
if ((edges = (IEDGE *) malloc(emax*(long)sizeof(IEDGE))) == NULL) {
status = 2;
goto skip;
}
/*
Find the maximum and minimum vertex bounds.
This is to allow calculation of the bounding triangle
*/
xmin = pxyz[0].x;
ymin = pxyz[0].y;
xmax = xmin;
ymax = ymin;
for (i=1;i<nv;i++) {
if (pxyz[i].x < xmin) xmin = pxyz[i].x;
if (pxyz[i].x > xmax) xmax = pxyz[i].x;
if (pxyz[i].y < ymin) ymin = pxyz[i].y;
if (pxyz[i].y > ymax) ymax = pxyz[i].y;
}
dx = xmax - xmin;
dy = ymax - ymin;
dmax = (dx > dy) ? dx : dy;
xmid = (xmax + xmin) / 2.0;
ymid = (ymax + ymin) / 2.0;
/*
Set up the supertriangle
This is a triangle which encompasses all the sample points.
The supertriangle coordinates are added to the end of the
vertex list. The supertriangle is the first triangle in
the triangle list.
*/
pxyz[nv+0].x = xmid - 20 * dmax;
pxyz[nv+0].y = ymid - dmax;
pxyz[nv+0].z = 0.0;
pxyz[nv+1].x = xmid;
pxyz[nv+1].y = ymid + 20 * dmax;
pxyz[nv+1].z = 0.0;
pxyz[nv+2].x = xmid + 20 * dmax;
pxyz[nv+2].y = ymid - dmax;
pxyz[nv+2].z = 0.0;
v[0].p1 = nv;
v[0].p2 = nv+1;
v[0].p3 = nv+2;
complete[0] = FALSE;
*ntri = 1;
/*
Include each point one at a time into the existing mesh
*/
for (i=0;i<nv;i++) {
xp = pxyz[i].x;
yp = pxyz[i].y;
nedge = 0;
/*
Set up the edge buffer.
If the point (xp,yp) lies inside the circumcircle then the
three edges of that triangle are added to the edge buffer
and that triangle is removed.
*/
for (j=0;j<(*ntri);j++) {
if (complete[j])
continue;
x1 = pxyz[v[j].p1].x;
y1 = pxyz[v[j].p1].y;
x2 = pxyz[v[j].p2].x;
y2 = pxyz[v[j].p2].y;
x3 = pxyz[v[j].p3].x;
y3 = pxyz[v[j].p3].y;
inside = CircumCircle(xp,yp,x1,y1,x2,y2,x3,y3,&xc,&yc,&r);
if (xc + r < xp)
complete[j] = TRUE;
if (inside) {
/* Check that we haven't exceeded the edge list size */
if (nedge+3 >= emax) {
emax += 100;
if ((edges = (IEDGE *) realloc(edges,emax*(long)sizeof(IEDGE))) == NULL) {
status = 3;
goto skip;
}
}
edges[nedge+0].p1 = v[j].p1;
edges[nedge+0].p2 = v[j].p2;
edges[nedge+1].p1 = v[j].p2;
edges[nedge+1].p2 = v[j].p3;
edges[nedge+2].p1 = v[j].p3;
edges[nedge+2].p2 = v[j].p1;
nedge += 3;
v[j] = v[(*ntri)-1];
complete[j] = complete[(*ntri)-1];
(*ntri)--;
j--;
}
}
/*
Tag multiple edges
Note: if all triangles are specified anticlockwise then all
interior edges are opposite pointing in direction.
*/
for (j=0;j<nedge-1;j++) {
for (k=j+1;k<nedge;k++) {
if ((edges[j].p1 == edges[k].p2) && (edges[j].p2 == edges[k].p1)) {
edges[j].p1 = -1;
edges[j].p2 = -1;
edges[k].p1 = -1;
edges[k].p2 = -1;
}
/* Shouldn't need the following, see note above */
if ((edges[j].p1 == edges[k].p1) && (edges[j].p2 == edges[k].p2)) {
edges[j].p1 = -1;
edges[j].p2 = -1;
edges[k].p1 = -1;
edges[k].p2 = -1;
}
}
}
/*
Form new triangles for the current point
Skipping over any tagged edges.
All edges are arranged in clockwise order.
*/
for (j=0;j<nedge;j++) {
if (edges[j].p1 < 0 || edges[j].p2 < 0)
continue;
if ((*ntri) >= trimax) {
status = 4;
goto skip;
}
v[*ntri].p1 = edges[j].p1;
v[*ntri].p2 = edges[j].p2;
v[*ntri].p3 = i;
complete[*ntri] = FALSE;
(*ntri)++;
}
}
/*
Remove triangles with supertriangle vertices
These are triangles which have a vertex number greater than nv
*/
for (i=0;i<(*ntri);i++) {
if (v[i].p1 >= nv || v[i].p2 >= nv || v[i].p3 >= nv) {
v[i] = v[(*ntri)-1];
(*ntri)--;
i--;
}
}
skip:
free(edges);
free(complete);
return(status);
}
/////////////////////////////////////////////////////////////////////
/*
Return TRUE if a point (xp,yp) is inside the circumcircle made up
of the points (x1,y1), (x2,y2), (x3,y3)
The circumcircle centre is returned in (xc,yc) and the radius r
NOTE: A point on the edge is inside the circumcircle
*/
int CTriangulate::CircumCircle(double xp,double yp,
double x1,double y1,double x2,double y2,double x3,double y3,
double *xc,double *yc,double *r)
{
double m1,m2,mx1,mx2,my1,my2;
double dx,dy,rsqr,drsqr;
double EPSILON = 0.000001;
/* Check for coincident points */
if (fabs(y1-y2) < EPSILON && fabs(y2-y3) < EPSILON)
return(FALSE);
if (fabs(y2-y1) < EPSILON) {
m2 = - (x3-x2) / (y3-y2);
mx2 = (x2 + x3) / 2.0;
my2 = (y2 + y3) / 2.0;
*xc = (x2 + x1) / 2.0;
*yc = m2 * (*xc - mx2) + my2;
} else if (fabs(y3-y2) < EPSILON) {
m1 = - (x2-x1) / (y2-y1);
mx1 = (x1 + x2) / 2.0;
my1 = (y1 + y2) / 2.0;
*xc = (x3 + x2) / 2.0;
*yc = m1 * (*xc - mx1) + my1;
} else {
m1 = - (x2-x1) / (y2-y1);
m2 = - (x3-x2) / (y3-y2);
mx1 = (x1 + x2) / 2.0;
mx2 = (x2 + x3) / 2.0;
my1 = (y1 + y2) / 2.0;
my2 = (y2 + y3) / 2.0;
*xc = (m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2);
*yc = m1 * (*xc - mx1) + my1;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -