📄 addrspace.cc
字号:
// addrspace.cc // Routines to manage address spaces (executing user programs).//// In order to run a user program, you must://// 1. link with the -n -T 0 option // 2. run coff2noff to convert the object file to Nachos format// (Nachos object code format is essentially just a simpler// version of the UNIX executable object code format)// 3. load the NOFF file into the Nachos file system// (if you are using the "stub" file system, you// don't need to do this last step)//// Copyright (c) 1992-1996 The Regents of the University of California.// All rights reserved. See copyright.h for copyright notice and limitation // of liability and disclaimer of warranty provisions.#include "copyright.h"#include "main.h"#include "addrspace.h"#include "machine.h"#include "noff.h"//----------------------------------------------------------------------// SwapHeader// Do little endian to big endian conversion on the bytes in the // object file header, in case the file was generated on a little// endian machine, and we're now running on a big endian machine.//----------------------------------------------------------------------static void SwapHeader (NoffHeader *noffH){ noffH->noffMagic = WordToHost(noffH->noffMagic); noffH->code.size = WordToHost(noffH->code.size); noffH->code.virtualAddr = WordToHost(noffH->code.virtualAddr); noffH->code.inFileAddr = WordToHost(noffH->code.inFileAddr);#ifdef RDATA noffH->readonlyData.size = WordToHost(noffH->readonlyData.size); noffH->readonlyData.virtualAddr = WordToHost(noffH->readonlyData.virtualAddr); noffH->readonlyData.inFileAddr = WordToHost(noffH->readonlyData.inFileAddr);#endif noffH->initData.size = WordToHost(noffH->initData.size); noffH->initData.virtualAddr = WordToHost(noffH->initData.virtualAddr); noffH->initData.inFileAddr = WordToHost(noffH->initData.inFileAddr); noffH->uninitData.size = WordToHost(noffH->uninitData.size); noffH->uninitData.virtualAddr = WordToHost(noffH->uninitData.virtualAddr); noffH->uninitData.inFileAddr = WordToHost(noffH->uninitData.inFileAddr);#ifdef RDATA DEBUG(dbgAddr, "code = " << noffH->code.size << " readonly = " << noffH->readonlyData.size << " init = " << noffH->initData.size << " uninit = " << noffH->uninitData.size << "\n");#endif}//----------------------------------------------------------------------// AddrSpace::AddrSpace// Create an address space to run a user program.// Set up the translation from program memory to physical // memory. For now, this is really simple (1:1), since we are// only uniprogramming, and we have a single unsegmented page table//----------------------------------------------------------------------AddrSpace::AddrSpace(){ pageTable = new TranslationEntry[NumPhysPages]; for (int i = 0; i < NumPhysPages; i++) { pageTable[i].virtualPage = i; // for now, virt page # = phys page # pageTable[i].physicalPage = i; pageTable[i].valid = TRUE; pageTable[i].use = FALSE; pageTable[i].dirty = FALSE; pageTable[i].readOnly = FALSE; } // zero out the entire address space bzero(kernel->machine->mainMemory, MemorySize);}//----------------------------------------------------------------------// AddrSpace::~AddrSpace// Dealloate an address space.//----------------------------------------------------------------------AddrSpace::~AddrSpace(){ delete pageTable;}//----------------------------------------------------------------------// AddrSpace::Load// Load a user program into memory from a file.//// Assumes that the page table has been initialized, and that// the object code file is in NOFF format.//// "fileName" is the file containing the object code to load into memory//----------------------------------------------------------------------bool AddrSpace::Load(char *fileName) { OpenFile *executable = kernel->fileSystem->Open(fileName); NoffHeader noffH; unsigned int size; if (executable == NULL) { cerr << "Unable to open file " << fileName << "\n"; return FALSE; } executable->ReadAt((char *)&noffH, sizeof(noffH), 0); if ((noffH.noffMagic != NOFFMAGIC) && (WordToHost(noffH.noffMagic) == NOFFMAGIC)) SwapHeader(&noffH); ASSERT(noffH.noffMagic == NOFFMAGIC);#ifdef RDATA// how big is address space? size = noffH.code.size + noffH.readonlyData.size + noffH.initData.size + noffH.uninitData.size + UserStackSize; // we need to increase the size // to leave room for the stack#else// how big is address space? size = noffH.code.size + noffH.initData.size + noffH.uninitData.size + UserStackSize; // we need to increase the size // to leave room for the stack#endif numPages = divRoundUp(size, PageSize); size = numPages * PageSize; ASSERT(numPages <= NumPhysPages); // check we're not trying // to run anything too big -- // at least until we have // virtual memory DEBUG(dbgAddr, "Initializing address space: " << numPages << ", " << size);// then, copy in the code and data segments into memory// Note: this code assumes that virtual address = physical address if (noffH.code.size > 0) { DEBUG(dbgAddr, "Initializing code segment."); DEBUG(dbgAddr, noffH.code.virtualAddr << ", " << noffH.code.size); executable->ReadAt( &(kernel->machine->mainMemory[noffH.code.virtualAddr]), noffH.code.size, noffH.code.inFileAddr); } if (noffH.initData.size > 0) { DEBUG(dbgAddr, "Initializing data segment."); DEBUG(dbgAddr, noffH.initData.virtualAddr << ", " << noffH.initData.size); executable->ReadAt( &(kernel->machine->mainMemory[noffH.initData.virtualAddr]), noffH.initData.size, noffH.initData.inFileAddr); }#ifdef RDATA if (noffH.readonlyData.size > 0) { DEBUG(dbgAddr, "Initializing read only data segment."); DEBUG(dbgAddr, noffH.readonlyData.virtualAddr << ", " << noffH.readonlyData.size); executable->ReadAt( &(kernel->machine->mainMemory[noffH.readonlyData.virtualAddr]), noffH.readonlyData.size, noffH.readonlyData.inFileAddr); }#endif delete executable; // close file return TRUE; // success}//----------------------------------------------------------------------// AddrSpace::Execute// Run a user program using the current thread//// The program is assumed to have already been loaded into// the address space////----------------------------------------------------------------------void AddrSpace::Execute() { kernel->currentThread->space = this; this->InitRegisters(); // set the initial register values this->RestoreState(); // load page table register kernel->machine->Run(); // jump to the user progam ASSERTNOTREACHED(); // machine->Run never returns; // the address space exits // by doing the syscall "exit"}//----------------------------------------------------------------------// AddrSpace::InitRegisters// Set the initial values for the user-level register set.//// We write these directly into the "machine" registers, so// that we can immediately jump to user code. Note that these// will be saved/restored into the currentThread->userRegisters// when this thread is context switched out.//----------------------------------------------------------------------voidAddrSpace::InitRegisters(){ Machine *machine = kernel->machine; int i; for (i = 0; i < NumTotalRegs; i++) machine->WriteRegister(i, 0); // Initial program counter -- must be location of "Start", which // is assumed to be virtual address zero machine->WriteRegister(PCReg, 0); // Need to also tell MIPS where next instruction is, because // of branch delay possibility // Since instructions occupy four bytes each, the next instruction // after start will be at virtual address four. machine->WriteRegister(NextPCReg, 4); // Set the stack register to the end of the address space, where we // allocated the stack; but subtract off a bit, to make sure we don't // accidentally reference off the end! machine->WriteRegister(StackReg, numPages * PageSize - 16); DEBUG(dbgAddr, "Initializing stack pointer: " << numPages * PageSize - 16);}//----------------------------------------------------------------------// AddrSpace::SaveState// On a context switch, save any machine state, specific// to this address space, that needs saving.//// For now, don't need to save anything!//----------------------------------------------------------------------void AddrSpace::SaveState() {}//----------------------------------------------------------------------// AddrSpace::RestoreState// On a context switch, restore the machine state so that// this address space can run.//// For now, tell the machine where to find the page table.//----------------------------------------------------------------------void AddrSpace::RestoreState() { kernel->machine->pageTable = pageTable; kernel->machine->pageTableSize = numPages;}//----------------------------------------------------------------------// AddrSpace::Translate// Translate the virtual address in _vaddr_ to a physical address// and store the physical address in _paddr_.// The flag _isReadWrite_ is false (0) for read-only access; true (1)// for read-write access.// Return any exceptions caused by the address translation.//----------------------------------------------------------------------ExceptionTypeAddrSpace::Translate(unsigned int vaddr, unsigned int *paddr, int isReadWrite){ TranslationEntry *pte; int pfn; unsigned int vpn = vaddr / PageSize; unsigned int offset = vaddr % PageSize; if(vpn >= numPages) { return AddressErrorException; } pte = &pageTable[vpn]; if(isReadWrite && pte->readOnly) { return ReadOnlyException; } pfn = pte->physicalPage; // if the pageFrame is too big, there is something really wrong! // An invalid translation was loaded into the page table or TLB. if (pfn >= NumPhysPages) { DEBUG(dbgAddr, "Illegal physical page " << pfn); return BusErrorException; } pte->use = TRUE; // set the use, dirty bits if(isReadWrite) pte->dirty = TRUE; *paddr = pfn*PageSize + offset; ASSERT((*paddr < MemorySize)); //cerr << " -- AddrSpace::Translate(): vaddr: " << vaddr << // ", paddr: " << *paddr << "\n"; return NoException;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -