📄 cwtnew.m
字号:
function coefs = cwtnew(signal,scales,wname,plotmode,xlim)
%CWT Real or Complex Continuous 1-D wavelet coefficients.
% COEFS = CWT(S,SCALES,'wname') computes the continuous
% wavelet coefficients of the vector S at real, positive
% SCALES, using wavelet whose name is 'wname'.
% The signal S is real, the wavelet can be real or complex.
%
% COEFS = CWT(S,SCALES,'wname','plot') computes
% and, in addition, plots the continuous wavelet
% transform coefficients.
%
% COEFS = CWT(S,SCALES,'wname',PLOTMODE) computes and,
% plots the continuous wavelet transform coefficients.
% Coefficients are colored using PLOTMODE.
% PLOTMODE = 'lvl' (By scale) or
% PLOTMODE = 'glb' (All scales) or
% PLOTMODE = 'abslvl' or 'lvlabs' (Absolute value and By scale) or
% PLOTMODE = 'absglb' or 'glbabs' (Absolute value and All scales)
%
% CWT(...,'plot') is equivalent to CWT(...,'absglb')
%
% You get 3-D plots (surfaces) using the same keywords listed
% above for the PLOTMODE parameter, preceded by '3D'. For example:
% COEFS = CWT(...,'3Dplot') or COEFS = CWT(...,'3Dlvl').
%
% COEFS = CWT(S,SCALES,'wname',PLOTMODE,XLIM) computes, and
% plots, the continuous wavelet transform coefficients.
% Coefficients are colored using PLOTMODE and XLIM.
% XLIM = [x1 x2] with 1 <= x1 < x2 <= length(S).
%
% For each given scale a within the vector SCALES, the
% wavelet coefficients C(a,b) are computed for b = 1 to
% ls = length(S), and are stored in COEFS(i,:)
% if a = SCALES(i).
% Output argument COEFS is a la-by-ls matrix where la
% is the length of SCALES. COEFS is a real or complex matrix
% depending on the wavelet type.
%
% Examples of valid uses are:
% t = linspace(-1,1,512);
% s = 1-abs(t);
% c = cwt(s,1:32,'cgau4');
% c = cwt(s,[64 32 16:-2:2],'morl');
% c = cwt(s,[3 18 12.9 7 1.5],'db2');
% c = cwt(s,1:32,'sym2','lvl');
% c = cwt(s,1:64,'sym4','abslvl',[100 400]);
%
% See also WAVEDEC, WAVEFUN, WAVEINFO, WCODEMAT.
% M. Misiti, Y. Misiti, G. Oppenheim, J.M. Poggi 12-Mar-96.
% Last Revision: 02-Feb-2000.
% Copyright 1995-2002 The MathWorks, Inc.
% $Revision: 1.18 $ $Date: 2002/03/28 17:24:50 $
% Check arguments.
if errargn(mfilename,nargin,[3:5],nargout,[0 1]), error('*'), end
err = 0;
if isempty(scales) , err = 1;
elseif min(size(scales))>1 , err = 1;
elseif min(scales)<eps, err = 1;
end
if err
errargt(mfilename,'Invalid Value for Scales !','msg');
error('*')
end
precis = 10;
signal = signal(:)';
len = length(signal);
coefs = zeros(length(scales),len);
nbscales = length(scales);
[psi_integ,xval] = intwave(wname,precis);
wtype = wavemngr('type',wname);
if wtype==5 , psi_integ = conj(psi_integ); end
xval = xval-xval(1);
dx = xval(2);
xmax = xval(end);
ind = 1;
for k = 1:nbscales
a = scales(k);
j = [1+floor([0:a*xmax]/(a*dx))];
if length(j)==1 , j = [1 1]; end
f = fliplr(psi_integ(j));
coefs(ind,:) = -sqrt(a)*wkeep(diff(conv(signal,f)),len);
ind = ind+1;
end
if nargin<4 , return; end
dummyCoefs = coefs;
NBC = 128;
if strmatch('3D',plotmode)
dim_plot = '3D';
else
dim_plot = '2D';
end
if isequal(wtype,5)
if ~isempty(findstr(plotmode,'lvl'))
plotmode = 'lvl';
else
plotmode = 'glb';
end
end
switch plotmode
case {'lvl','3Dlvl'}
lev_mode = 'row';
abs_mode = 0;
beg_title = ['By scale'];
case {'glb','3Dglb'}
lev_mode = 'mat';
abs_mode = 0;
beg_title = '';
case {'abslvl','lvlabs','3Dabslvl','3Dlvlabs'}
lev_mode = 'row';
abs_mode = 1;
beg_title = ['Abs. and by scale'];
case {'absglb','glbabs','plot','2D','3Dabsglb','3Dglbabs','3Dplot','3D'}
lev_mode = 'mat';
abs_mode = 1;
beg_title = ['Absolute'];
otherwise
plotmode = 'absglb';
lev_mode = 'mat';
abs_mode = 1;
beg_title = ['Absolute'];
dim_plot = '2D';
end
if abs_mode , dummyCoefs = abs(dummyCoefs); end
if nargin==5
if xlim(2)<xlim(1) , xlim = xlim([2 1]); end
if xlim(1)<1 , xlim(1) = 1; end
if xlim(2)>len , xlim(2) = len; end
indices = [xlim(1):xlim(2)];
switch plotmode
case {'glb','absglb'}
cmin = min(min(dummyCoefs(:,indices)));
cmax = max(max(dummyCoefs(:,indices)));
dummyCoefs(dummyCoefs<cmin) = cmin;
dummyCoefs(dummyCoefs>cmax) = cmax;
case {'lvl','abslvl'}
cmin = min((dummyCoefs(:,indices))')';
cmax = max((dummyCoefs(:,indices))')';
for k=1:nbscales
ind = dummyCoefs(k,:)<cmin(k);
dummyCoefs(k,ind) = cmin(k);
ind = dummyCoefs(k,:)>cmax(k);
dummyCoefs(k,ind) = cmax(k);
end
end
end
nb = min(5,nbscales);
level = '';
for k=1:nb , level = [level ' ' num2str(scales(k))]; end
if nb<nbscales , level = [level ' ...']; end
nb = ceil(nbscales/20);
tics = 1:nb:nbscales;
tmp = scales(1:nb:nb*length(tics));
labs = num2str(tmp(:));
plotPARAMS = {NBC,lev_mode,abs_mode,tics,labs,''};
switch dim_plot
case '2D'
if wtype<5
titleSTR = [beg_title ' Coef a = ' level];
plotPARAMS{6} = titleSTR;
axeAct = gca;
plotCOEFS(axeAct,dummyCoefs,plotPARAMS);
else
axeAct = subplot(2,2,1);
titleSTR = sprintf('Real part of Ca,b for a = %s', level);
plotPARAMS{6} = titleSTR;
plotCOEFS(axeAct,real(dummyCoefs),plotPARAMS);
axeAct = subplot(2,2,2);
titleSTR = sprintf('Imaginary part of Ca,b for a = %s', level);
plotPARAMS{6} = titleSTR;
plotCOEFS(axeAct,imag(dummyCoefs),plotPARAMS);
axeAct = subplot(2,2,3);
titleSTR = sprintf('Modulus of Ca,b for a = %s', level);
plotPARAMS{6} = titleSTR;
plotCOEFS(axeAct,abs(dummyCoefs),plotPARAMS);
axeAct = subplot(2,2,4);
titleSTR = sprintf('Angle of Ca,b for a = %s', level);
plotPARAMS{6} = titleSTR;
plotCOEFS(axeAct,angle(dummyCoefs),plotPARAMS);
end
colormap(pink(NBC));
case '3D'
if wtype<5
titleSTR = [beg_title ' Values of Ca,b Coefficients for a = ' level];
plotPARAMS{6} = titleSTR;
axeAct = gca;
surfCOEFS(axeAct,dummyCoefs,plotPARAMS);
% xl = [1 len];
% yl = [1 nbscales];
% zl = [min(min(dummyCoefs)) max(max(dummyCoefs))];
% set(axeAct,'Xlim',xl,'Ylim',yl,'Zlim',zl,'view',[-30 40]);
else
axeAct = subplot(2,2,1);
titleSTR = sprintf('Real part of Ca,b for a = %s', level);
plotPARAMS{6} = titleSTR;
surfCOEFS(axeAct,real(dummyCoefs),plotPARAMS);
axeAct = subplot(2,2,2);
titleSTR = sprintf('Imaginary part of Ca,b for a = %s', level);
plotPARAMS{6} = titleSTR;
surfCOEFS(axeAct,imag(dummyCoefs),plotPARAMS);
axeAct = subplot(2,2,3);
titleSTR = sprintf('Modulus of Ca,b for a = %s', level);
plotPARAMS{6} = titleSTR;
surfCOEFS(axeAct,abs(dummyCoefs),plotPARAMS);
axeAct = subplot(2,2,4);
titleSTR = sprintf('Angle of Ca,b for a = %s', level);
plotPARAMS{6} = titleSTR;
surfCOEFS(axeAct,angle(dummyCoefs),plotPARAMS);
end
end
%----------------------------------------------------------------------
function plotCOEFS(axeAct,coefs,plotPARAMS)
[NBC,lev_mode,abs_mode,tics,labs,titleSTR] = deal(plotPARAMS{:});
coefs = wcodemat(coefs,NBC,lev_mode,abs_mode);
img = image(coefs');
%set(axeAct, ...
% 'XTick',tics(1:4:length(tics)), ...
% 'XTickLabel',labs(1:4:length(labs)), ...
% 'XDir','normal', ...
% 'Box','On' ...
% );
title(titleSTR,'Parent',axeAct);
ylabel('time b','Parent',axeAct);
xlabel('scales a','Parent',axeAct);
%----------------------------------------------------------------------
function surfCOEFS(axeAct,coefs,plotPARAMS)
[NBC,lev_mode,abs_mode,tics,labs,titleSTR] = deal(plotPARAMS{:});
img = surf(coefs);
set(axeAct, ...
'YTick',tics, ...
'YTickLabel',labs, ...
'YDir','normal', ...
'Box','On' ...
);
title(titleSTR,'Parent',axeAct);
xlabel('time (or space) b','Parent',axeAct);
ylabel('scales a','Parent',axeAct);
zlabel('COEFS','Parent',axeAct);
xl = [1 size(coefs,2)];
yl = [1 size(coefs,1)];
zl = [min(min(coefs)) max(max(coefs))];
set(axeAct,'Xlim',xl,'Ylim',yl,'Zlim',zl,'view',[-30 40]);
colormap(pink(NBC));
shading('interp')
%----------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -