⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 skr0_regular.m

📁 super resolution matlab
💻 M
字号:
function z = skr0_regular(y, h, C, r, ksize)
% [SKR0_REGULAR]
% The zeroth order steering kernel regression function for regularly sampled
% data.
%
% [USAGE]
% z = skr0_regular(y, h, C, r, ksize)
%
% [RETURNS]
% z     : the estimated image
%
% [PARAMETERS]
% y     : the input image
% h     : the global smoothing parameter
% C     : the covariance matrices containing local orientation information
% r     : the upscaling factor ("r" must be an integer number)
% ksize : the size of the kernel (ksize x ksize, and "ksize" must be
%         an odd number)
%
% [HISTORY]
% June 17, 2007 : created by Hiro

% Get the oritinal image size
[N, M] = size(y);

% Initialize the return parameters
z = zeros(N*r, M*r);

% Pixel sampling positions
radius = (ksize - 1) / 2;
[x2, x1] = meshgrid(-radius-(r-1)/r : 1/r : radius, -radius-(r-1)/r : 1/r : radius);

% The feture matrix
Xx = ones(ksize^2,1);

% pre-culculation for covariance matrices
C11 = zeros(N, M);
C12 = zeros(N, M);
C22 = zeros(N, M);
sq_detC = zeros(N, M);
for n = 1 : N
    for m = 1 : M
        C11(n,m) = C(1,1,n,m);
        C12(n,m) = C(1,2,n,m);
        C22(n,m) = C(2,2,n,m);
        sq_detC(n,m) = sqrt(det(C(:,:,n,m)));
    end
end

% Mirroring
y = EdgeMirror(y, [radius, radius]);
C11 = EdgeMirror(C11, [radius, radius]);
C12 = EdgeMirror(C12, [radius, radius]);
C22 = EdgeMirror(C22, [radius, radius]);
sq_detC = EdgeMirror(sq_detC, [radius, radius]);

% Estimate an image and its first gradients with pixel-by-pixel
for i = 1 : r
    for j = 1 : r
        xx1 = downsample2(x1(r-i+1:end, r-j+1:end), r);
        xx2 = downsample2(x2(r-i+1:end, r-j+1:end), r);
                
        for n = 1 : N
            nn = (n - 1) * r + i;
            for m = 1 : M
                mm = (m - 1) * r + j;
                
                % Neighboring samples to be taken account into the estimation
                yp = y(n:n+ksize-1, m:m+ksize-1);
                
                % compute the weight matrix
                tt = xx1 .* (C11(n:n+ksize-1, m:m+ksize-1) .* xx1...
                        + C12(n:n+ksize-1, m:m+ksize-1) .* xx2)...
                        + xx2 .* (C12(n:n+ksize-1, m:m+ksize-1) .* xx1...
                        + C22(n:n+ksize-1, m:m+ksize-1) .* xx2);
                W = exp(-(0.5/h^2) * tt) .* sq_detC(n:n+ksize-1, m:m+ksize-1);
                
                % Equivalent kernel
                Xw = W(:);
                A = inv(Xx.' * Xw) * (Xw.');
                
                % Estimate the pixel values at (nn,mm)
                z(nn,mm)   = A(1,:) * yp(:);
            end
        end
    end
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -