📄 tfrbud.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrbud}\hspace*{-1.6cm}{\Large \bf tfrbud}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Butterworth time-frequency distribution.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[tfr,t,f] = tfrbud(x)[tfr,t,f] = tfrbud(x,t)[tfr,t,f] = tfrbud(x,t,N)[tfr,t,f] = tfrbud(x,t,N,g)[tfr,t,f] = tfrbud(x,t,N,g,h)[tfr,t,f] = tfrbud(x,t,N,g,h,sigma)[tfr,t,f] = tfrbud(x,t,N,g,h,sigma,trace)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm} {\ty tfrbud} computes the Butterworth distribution of a discrete-time signal {\ty x}, or the cross Butterworth representation between two signals. This distribution has the following expression :\[Bud_x(t,\nu)=\int_{-\infty}^{+\infty} \frac{\sqrt{\sigma}}{2|\tau|}\e^{-|v|\sqrt{\sigma}/|\tau|}\ x(t+v+\frac{\tau}{2})\x^*(t+v-\frac{\tau}{2})\ e^{-j2\pi \nu \tau}\ dv\ d\tau.\]\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8cm} c}Name & Description & Default value\\\hline {\ty x} & signal if auto-BUD, or {\ty [x1,x2]} if cross-BUD. {\ty Nx=length(x)} \\ {\ty t} & time instant(s) & {\ty (1:Nx)}\\ {\ty N} & number of frequency bins & {\ty Nx}\\ {\ty g} & time smoothing window, {\ty G(0)} being forced to {\ty 1}, where {\ty G(f)} is the Fourier transform of {\ty g(t)}. & {\ty window(odd(N/10))}\\ {\ty h} & frequency smoothing window, {\ty h(0)} being forced to {\ty 1}. & {\ty window(odd(N/4))}\\ {\ty sigma} & kernel width & {\ty 1}\\ {\ty trace} & if nonzero, the progression of the algorithm is shown & {\ty 0}\\ \hline {\ty tfr} & time-frequency representation\\ {\ty f} & vector of normalized frequencies\\ \hline\end{tabular*}\vspace*{.2cm}When called without output arguments, {\ty tfrbud} runs {\ty tfrqview}\end{minipage}\newpage{\bf \large \fontfamily{cmss}\selectfont Example}\begin{verbatim} sig=fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4); g=window(9,'Kaiser'); h=window(27,'Kaiser'); t=1:128; tfrbud(sig,t,128,g,h,3.6,1);\end{verbatim}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}all the {\ty tfr*} functions.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Reference}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] D. Wu, J. Morris, ``Time frequency representations using a radialbutterworth kernel'', Proc IEEE Symp TFTSA Philadelphia PA, pp. 60-63,oct. 1994.\\[2] A. Papandreou, G.F. Boudreaux-Bartels, ``Generalization of theChoi-Williams and the Buitterworth Distribution for Time-FrequencyAnalysis'', IEEE Trans SP, vol 41, pp 463-472, Jan 1993.\\[3] F. Auger ``Repr閟entations Temps-Fr閝uence des SignauxNon-Stationnaires\,: Synth鑣e et Contributions'' Ph. D. Thesis, EcoleCentrale de Nantes, France, 1991.\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -