📄 tfrzam.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrzam}
\hspace*{-1.6cm}{\Large \bf tfrzam}
\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}
{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Zhao-Atlas-Marks time-frequency distribution.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
[tfr,t,f] = tfrzam(x)
[tfr,t,f] = tfrzam(x,t)
[tfr,t,f] = tfrzam(x,t,N)
[tfr,t,f] = tfrzam(x,t,N,g)
[tfr,t,f] = tfrzam(x,t,N,g,h)
[tfr,t,f] = tfrzam(x,t,N,g,h,trace)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
{\ty tfrzam} computes the Zhao-Atlas-Marks distribution of a
discrete-time signal {\ty x}, or the cross Zhao-Atlas-Marks
representation between two signals. This distribution writes
\[ZAM_x(t,\nu)=\int_{-\infty}^{+\infty} \left[\ h(\tau)\
\int_{t-|\tau|/2}^{t+|\tau|/2} x(s+\tau/2)\ x^*(s-\tau/2)\ ds\right]\
e^{-j2\pi \nu \tau}\ d\tau. \]
It is also known as the {\it Cone-Shaped Kernel distribution}. \\
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8cm} c}
Name & Description & Default value\\
\hline
{\ty x} & signal if auto-ZAM, or {\ty [x1,x2]} if cross-ZAM {\ty
(Nx=length(x))}\\
{\ty t} & time instant(s) & {\ty (1:Nx)}\\
{\ty N} & number of frequency bins & {\ty Nx}\\
{\ty g} & time smoothing window, {\ty G(0)} being forced to {\ty 1}, where {\ty G(f)} is the Fourier transform of {\ty g(t)}
& {\ty window(odd(N/10))}\\
{\ty h} & frequency smoothing window, {\ty h(0)} being forced to {\ty 1}
& {\ty window(odd(N/4))}\\
{\ty trace} & if nonzero, the progression of the algorithm is shown
& {\ty 0}\\
\hline {\ty tfr} & time-frequency representation\\
{\ty f} & vector of normalized frequencies\\
\hline
\end{tabular*}
\vspace*{.2cm}
When called without outpout arguments, {\ty tfrzam} runs {\ty tfrqview}.
\end{minipage}
\newpage
{\bf \large \fontfamily{cmss}\selectfont Example}
\begin{verbatim}
sig=fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4);
g=window(9,'Kaiser'); h=window(27,'Kaiser');
tfrzam(sig,1:128,128,g,h,1);
\end{verbatim}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
all the {\ty tfr*} functions.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Reference}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
[1] Y. Zhao, L. Atlas, R. Marks ``The Use of the Cone-Shaped Kernels for
Generalized Time-Frequency Representations of Nonstationary Signals'' IEEE
Trans. on Acoust., Speech and Signal Proc., Vol. 38, No. 7, pp. 1084-91,
1990.
\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -