📄 tfrscalo.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrscalo}\hspace*{-1.6cm}{\Large \bf tfrscalo}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Scalogram, for Morlet or Mexican hat wavelet.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[tfr,t,f,wt] = tfrscalo(x)[tfr,t,f,wt] = tfrscalo(x,t)[tfr,t,f,wt] = tfrscalo(x,t,wave)[tfr,t,f,wt] = tfrscalo(x,t,wave,fmin,fmax)[tfr,t,f,wt] = tfrscalo(x,t,wave,fmin,fmax,N)[tfr,t,f,wt] = tfrscalo(x,t,wave,fmin,fmax,N,trace)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm} {\ty tfrscalo} computes the scalogram (squared magnitude of a continuous wavelet transform). Its expression is the following\,:\[SC_x(t,a;h)=\left|T_x(t,a;h)\right|^2=\frac{1}{|a|}\\left|\int_{-\infty}^{+\infty} x(s)\ h^*\left(\dfrac{s-t}{a}\right)\ds\right|^2.\] This time-scale expression has an equivalent time-frequecyexpression, obtained using the formal identification $a=\dfrac{\nu_0}{\nu}$,where $\nu_0$ is the central frequency of the mother wavelet $h(t)$.\\\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline {\ty x} & signal to be analyzed ({\ty Nx=length(x)}). Its analytic version is used ({\ty z=hilbert(real(x))})\\ {\ty t} & time instant(s) on which the {\ty tfr} is evaluated & {\ty (1:Nx)}\\ {\ty wave} & half length of the Morlet analyzing wavelet at coarsest scale. If {\ty wave=0}, the Mexican hat is used & {\ty sqrt(Nx)}\\ {\ty fmin, fmax} & respectively lower and upper frequency bounds of the analyzed signal. These parameters fix the equivalent frequency bandwidth (expressed in Hz). When unspecified, you have to enter them at the command line from the plot of the spectrum. {\ty fmin} and {\ty fmax} must be $>${\ty 0} and $\leq${\ty 0.5}\\ {\ty N} & number of analyzed voices & auto\footnote{This value, determined from {\ty fmin} and {\ty fmax}, is the next-power-of-two of the minimum value checking the non-overlapping condition in the fast Mellin transform.}\\\hline\end{tabular*}\end{minipage}\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline {\ty trace} & if nonzero, the progression of the algorithm is shown & {\ty 0}\\\hline {\ty tfr} & time-frequency matrix containing the coefficients of the decomposition (abscissa correspond to uniformly sampled time, and ordinates correspond to a geometrically sampled frequency). First row of {\ty tfr} corresponds to the lowest frequency. \\ {\ty f} & vector of normalized frequencies (geometrically sampled from {\ty fmin} to {\ty fmax})\\ {\ty wt} & Complex matrix containing the corresponding wavelet transform. The scalogram {\ty tfr} is the squared modulus of {\ty wt}\\\hline\end{tabular*}\vspace*{.2cm}When called without output arguments, {\ty tfrscalo} runs {\ty tfrqview}.\end{minipage}\vspace*{1cm}{\bf \large \fontfamily{cmss}\selectfont Example}\begin{verbatim} sig=altes(64,0.1,0.45); tfrscalo(sig); \end{verbatim}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}all the {\ty tfr*} functions.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Reference}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] O. Rioul, P. Flandrin ``Time-Scale Distributions : A General ClassExtending Wavelet Transforms'', IEEE Transactions on Signal Processing,Vol. 40, No. 7, pp. 1746-57, July 1992.\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -