⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tfrscalo.tex

📁 时频分析的工具包
💻 TEX
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrscalo}\hspace*{-1.6cm}{\Large \bf tfrscalo}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Scalogram, for Morlet or Mexican hat wavelet.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[tfr,t,f,wt] = tfrscalo(x)[tfr,t,f,wt] = tfrscalo(x,t)[tfr,t,f,wt] = tfrscalo(x,t,wave)[tfr,t,f,wt] = tfrscalo(x,t,wave,fmin,fmax)[tfr,t,f,wt] = tfrscalo(x,t,wave,fmin,fmax,N)[tfr,t,f,wt] = tfrscalo(x,t,wave,fmin,fmax,N,trace)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}        {\ty tfrscalo} computes the scalogram (squared magnitude of a        continuous wavelet transform). Its expression is the following\,:\[SC_x(t,a;h)=\left|T_x(t,a;h)\right|^2=\frac{1}{|a|}\\left|\int_{-\infty}^{+\infty} x(s)\ h^*\left(\dfrac{s-t}{a}\right)\ds\right|^2.\] This time-scale expression has an equivalent time-frequecyexpression, obtained using the formal identification $a=\dfrac{\nu_0}{\nu}$,where $\nu_0$ is the central frequency of the mother wavelet $h(t)$.\\\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline        {\ty x} & signal to be analyzed ({\ty Nx=length(x)}). Its            analytic version is used ({\ty z=hilbert(real(x))})\\          {\ty t} & time instant(s) on which the {\ty tfr} is evaluated & {\ty (1:Nx)}\\        {\ty wave} & half length of the Morlet analyzing wavelet at coarsest             scale. If {\ty wave=0}, the Mexican hat is used                                                & {\ty sqrt(Nx)}\\        {\ty fmin, fmax} & respectively lower and upper frequency bounds of             the analyzed signal. These parameters fix the equivalent            frequency bandwidth (expressed in Hz). When unspecified, you            have to enter them at the command line from the plot of the            spectrum. {\ty fmin} and {\ty fmax} must be $>${\ty 0} and $\leq${\ty 0.5}\\        {\ty N} &  number of analyzed voices  & auto\footnote{This value,	determined from {\ty fmin} and {\ty fmax}, is the 	next-power-of-two of the minimum value checking the non-overlapping	condition in the fast Mellin transform.}\\\hline\end{tabular*}\end{minipage}\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline        {\ty trace} & if nonzero, the progression of the algorithm is shown                                                & {\ty 0}\\\hline  {\ty tfr} & time-frequency matrix containing the coefficients of the            decomposition (abscissa correspond to uniformly sampled time,            and ordinates correspond to a geometrically sampled            frequency). First row of {\ty tfr} corresponds to the lowest             frequency. \\        {\ty f} & vector of normalized frequencies (geometrically sampled             from {\ty fmin} to {\ty fmax})\\        {\ty wt} & Complex matrix containing the corresponding wavelet            transform. The scalogram {\ty tfr} is the squared modulus of {\ty wt}\\\hline\end{tabular*}\vspace*{.2cm}When called without output arguments, {\ty tfrscalo} runs {\ty tfrqview}.\end{minipage}\vspace*{1cm}{\bf \large \fontfamily{cmss}\selectfont Example}\begin{verbatim}         sig=altes(64,0.1,0.45);          tfrscalo(sig);  \end{verbatim}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}all the {\ty tfr*} functions.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Reference}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] O. Rioul, P. Flandrin ``Time-Scale Distributions : A General ClassExtending Wavelet Transforms'', IEEE Transactions on Signal Processing,Vol. 40, No. 7, pp. 1746-57, July 1992.\end{minipage}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -