📄 tfrunter.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrunter}\hspace*{-1.6cm}{\Large \bf tfrunter}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Unterberger time-frequency distribution, active or passive form.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[tfr,t,f] = tfrunter(x)[tfr,t,f] = tfrunter(x,t)[tfr,t,f] = tfrunter(x,t,form)[tfr,t,f] = tfrunter(x,t,form,fmin,fmax)[tfr,t,f] = tfrunter(x,t,form,fmin,fmax,N)[tfr,t,f] = tfrunter(x,t,form,fmin,fmax,N,trace)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm} {\ty tfrunter} generates the auto- or cross-Unterberger distribution (active or passive form). The expression of the activeUnterberger distribution writes\begin{eqnarray*}U^{(a)}_x(t,a)=\frac{1}{|a|}\ \int_0^{+\infty} (1+\frac{1}{\alpha^2})\X\left(\frac{\alpha}{a}\right)\ X^*\left(\frac{1}{\alpha a}\right)\e^{j2\pi (\alpha-1/\alpha)\frac{t}{a}}\ d\alpha, \end{eqnarray*}whereas the passive Unterberger distribution writes\begin{eqnarray*}U^{(p)}_x(t,a)=\frac{1}{|a|} \int_0^{+\infty} \frac{2}{\alpha}\X\left(\frac{\alpha}{a}\right)\ X^*\left(\frac{1}{\alpha a}\right)\e^{j2\pi (\alpha-\frac{1}{\alpha})\frac{t}{a}}\ d\alpha. \end{eqnarray*}\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline {\ty x} & signal (in time) to be analyzed. If {\ty x=[x1 x2]}, {\ty tfrunter} computes the cross-Unterberger distribution {\ty (Nx=length(x))}\\ {\ty t} & time instant(s) on which the {\ty tfr} is evaluated & {\ty (1:Nx)}\\ {\ty form} & {\ty 'A'} for active, {\ty 'P'} for passive Unterberger distribution & {\ty 'A'}\\ {\ty fmin, fmax} & respectively lower and upper frequency bounds of the analyzed signal. These parameters fix the equivalent frequency bandwidth (expressed in Hz). When unspecified, you have to enter them at the command line from the plot of the spectrum. {\ty fmin} and {\ty fmax} must be $>${\ty 0} and $\leq${\ty 0.5}\\ {\ty N} & number of analyzed voices & auto\footnote{This value, determined from {\ty fmin} and {\ty fmax}, is the next-power-of-two of the minimum value checking the non-overlapping condition in the fast Mellin transform.}\\\hline\end{tabular*}\end{minipage} %\newpage\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline {\ty trace} & if nonzero, the progression of the algorithm is shown & {\ty 0}\\ \hline {\ty tfr} & time-frequency matrix containing the coefficients of the decomposition (abscissa correspond to uniformly sampled time, and ordinates correspond to a geometrically sampled frequency). First row of {\ty tfr} corresponds to the lowest frequency. \\ {\ty f} & vector of normalized frequencies (geometrically sampled from {\ty fmin} to {\ty fmax})\\\hline\end{tabular*}\vspace*{.2cm}When called without output arguments, {\ty tfrunter} runs {\ty tfrqview}.\end{minipage}\vspace*{1cm}{\bf \large \fontfamily{cmss}\selectfont Example}\begin{verbatim} sig=altes(64,0.1,0.45); tfrunter(sig);\end{verbatim}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}all the {\ty tfr*} functions.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont References}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] A. Unterberger ``The Calculus of Pseudo-Differential Operators of FuchsType'' Comm. in Part. Diff. Eq., Vol. 9, pp. 1179-1236, 1984.\\[2] P. Flandrin, P. Gon鏰lv鑣 ``Geometry of Affine Time-FrequencyDistributions'' Applied and Computational Harmonic Analysis, Vol. 3,pp. 10-39, January 1996.\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -