📄 integ2d.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.
\markright{integ2d}
\hspace*{-1.6cm}{\Large \bf integ2d}
\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}
{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Approximate 2-D integral.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
som = integ2d(MAT)
som = integ2d(MAT,x)
som = integ2d(MAT,x,y)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
{\ty integ2d} approximates the 2-D integral of matrix {\ty MAT}
according to abscissa {\ty x} and ordinate {\ty y}.\\
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\
\hline
{\ty MAT} & {\ty (M,N)} matrix to be integrated\\
{\ty x} & {\ty N}-row-vector indicating the abscissa integration path
& {\ty (1:N)}\\
{\ty y} & {\ty M}-column-vector indicating the ordinate integration path
& {\ty (1:M)}\\
\hline {\ty som} & result of integration\\
\hline
\end{tabular*}
\end{minipage}
\vspace*{1cm}
{\bf \large \fontfamily{cmss}\selectfont Example}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Consider the scalogram of a sinusoidal frequency modulation of 128 points,
and compute the integral over the time-scale plane of the scalogram :
\begin{verbatim}
S = fmsin(128,0.2,0.3);
[TFR,t,f] = tfrscalo(S,1:128,8,0.1,0.4,128,1);
Etfr = integ2d(TFR,t,f)
Etfr =
128.0000
\end{verbatim}
We find for {\ty Etfr} the value of the signal energy, which is the
expected value since the scalogram preserves energy.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
integ.
\end{verbatim}
\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -