📄 tfrgabor.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrgabor}
\hspace*{-1.6cm}{\Large \bf tfrgabor}
\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}
{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Gabor representation of a signal.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
[tfr,dgr,gam] = tfrgabor(x)
[tfr,dgr,gam] = tfrgabor(x,N)
[tfr,dgr,gam] = tfrgabor(x,N,Q)
[tfr,dgr,gam] = tfrgabor(x,N,Q,h)
[tfr,dgr,gam] = tfrgabor(x,N,Q,h,trace)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
{\ty tfrgabor} computes the Gabor representation of signal {\ty x},
for a given synthesis window {\ty h}, on a rectangular grid of size
{\ty (N,M)} in the time-frequency plane. {\ty M} and {\ty N} must
be such that {\ty N1 = M * N / Q} where {\ty N1=length(x)} and {\ty
Q} is an integer corresponding to the degree of oversampling. The
expression of the Gabor representation is the following :
\begin{eqnarray*}
G_x[n,m;h] &=& \sum_k x[k]\ h^*[k-n]\ \exp{[-j2\pi m k]}
\end{eqnarray*}
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\
\hline
{\ty x} & signal to be analyzed ({\ty length(x)=N1})\\
{\ty N} & number of Gabor coefficients in time ({\ty N1} must be a multiple
of {\ty N}) & {\ty divider(N1)}\\
{\ty Q} & degree of oversampling ; must be a divider of {\ty N} &
{\ty Q=divider(N)}\\
{\ty h} & synthesis window, which was originally chosen & {\ty
window(odd(N),}\\
& as a Gaussian window by Gabor. {\ty Length(h)} should be
as closed as possible from {\ty N}, and must be $\geq${\ty N}.
{\ty h} must be of unit energy, and centered & {\ty
'gauss')}\\
{\ty trace} & if nonzero, the progression of the algorithm is shown
& {\ty 0}\\
\hline {\ty tfr} & square modulus of the Gabor coefficients\\
{\ty dgr} & Gabor coefficients (complex values)\\
{\ty gam} & biorthogonal (dual frame) window associated to {\ty h}\\
\hline
\end{tabular*}
\vspace*{.2cm}
When called without output arguments, {\ty tfrgabor} runs {\ty tfrqview}.\\
\end{minipage}
\newpage
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
If {\ty Q=1}, the time-frequency plane (TFP) is critically sampled, so
there is no redundancy.\\
If {\ty Q>1}, the TFP is oversampled, allowing a greater numerical
stability of the algorithm. \\
\end{minipage}
\vspace*{1cm}
{\bf \large \fontfamily{cmss}\selectfont Example}
\begin{verbatim}
sig=fmlin(128);
tfrgabor(sig,64,32);
\end{verbatim}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
all the {\ty tfr*} functions.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont References}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
[1] Zibulski, Zeevi "Oversampling in the Gabor Scheme" IEEE Trans. on
Signal Processing, Vol. 41, No. 8, pp. 2679-87, August 1993.\\
[2] Wexler, Raz "Discrete Gabor Expansions" Signal Processing, Vol. 21, No.
3, pp. 207-221, Nov 1990.
\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -