⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tfrgabor.tex

📁 时频分析的工具包
💻 TEX
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrgabor}
\hspace*{-1.6cm}{\Large \bf tfrgabor}

\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}

{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Gabor representation of a signal.
\end{minipage}
\vspace*{.5cm}

{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
[tfr,dgr,gam] = tfrgabor(x)
[tfr,dgr,gam] = tfrgabor(x,N)
[tfr,dgr,gam] = tfrgabor(x,N,Q)
[tfr,dgr,gam] = tfrgabor(x,N,Q,h)
[tfr,dgr,gam] = tfrgabor(x,N,Q,h,trace)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}

{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
	{\ty tfrgabor} computes the Gabor representation of signal {\ty x},
        for a given synthesis window {\ty h}, on a rectangular grid of size
        {\ty (N,M)} in the time-frequency plane. {\ty M} and {\ty N} must
        be such that {\ty N1 = M * N / Q} where {\ty N1=length(x)} and {\ty
        Q} is an integer corresponding to the degree of oversampling. The
        expression of the Gabor representation is the following :
\begin{eqnarray*}
G_x[n,m;h] &=& \sum_k x[k]\ h^*[k-n]\ \exp{[-j2\pi m k]} 
\end{eqnarray*}

\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\
\hline
        {\ty x}   & signal to be analyzed ({\ty length(x)=N1})\\
        {\ty N}   & number of Gabor coefficients in time ({\ty N1} must be a multiple
              of {\ty N})                 & {\ty divider(N1)}\\
        {\ty Q}   & degree of oversampling ; must be a divider of {\ty N} &
		{\ty Q=divider(N)}\\ 
        {\ty h}   & synthesis window, which was originally chosen & {\ty
			window(odd(N),}\\
		& as a Gaussian window by Gabor. {\ty Length(h)} should be
		as closed as possible from {\ty N}, and must be $\geq${\ty N}.
              {\ty h} must be of unit energy, and centered & {\ty
			'gauss')}\\  
        {\ty trace} & if nonzero, the progression of the algorithm is shown
                                         & {\ty 0}\\
     \hline {\ty tfr} & square modulus of the Gabor coefficients\\
        {\ty dgr} & Gabor coefficients (complex values)\\ 
        {\ty gam} & biorthogonal (dual frame) window associated to {\ty h}\\

\hline
\end{tabular*}
\vspace*{.2cm}

When called without output arguments, {\ty tfrgabor} runs {\ty tfrqview}.\\
\end{minipage}

\newpage

\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
If {\ty Q=1}, the time-frequency plane (TFP) is critically sampled, so
there is no redundancy.\\
If {\ty Q>1}, the TFP is oversampled, allowing a greater numerical
stability of the algorithm. \\

\end{minipage}
\vspace*{1cm}

{\bf \large \fontfamily{cmss}\selectfont Example}
\begin{verbatim}
         sig=fmlin(128); 
         tfrgabor(sig,64,32); 
\end{verbatim}
\vspace*{.5cm}

{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
all the {\ty tfr*} functions.
\end{minipage}
\vspace*{.5cm}


{\bf \large \fontfamily{cmss}\selectfont References}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
[1] Zibulski, Zeevi "Oversampling in the Gabor Scheme" IEEE Trans. on
	    Signal Processing, Vol. 41, No. 8, pp. 2679-87, August 1993.\\ 

[2] Wexler, Raz "Discrete Gabor Expansions" Signal Processing, Vol. 21, No.
	    3, pp. 207-221, Nov 1990.

\end{minipage}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -