⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tfrrpmh.tex

📁 时频分析的工具包
💻 TEX
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrrpmh}\hspace*{-1.6cm}{\Large \bf tfrrpmh}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Reassigned pseudo Margenau-Hill time-frequency distribution.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[tfr,rtfr,hat] = tfrrpmh(x) [tfr,rtfr,hat] = tfrrpmh(x,t) [tfr,rtfr,hat] = tfrrpmh(x,t,N) [tfr,rtfr,hat] = tfrrpmh(x,t,N,h) [tfr,rtfr,hat] = tfrrpmh(x,t,N,h,trace) \end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}        {\ty tfrrpmh} computes the pseudo Margenau-Hill distribution and        its reassigned version. The reassigned pseudo-MHD is given by the        following expression\,:\begin{eqnarray*}\hspace*{-1cm}PMH_x^{(r)}(t',\nu';h)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} PMH_x(t,\nu;h)\ \delta(t'-\hat{t}(x;t,\nu))\\delta(\nu'-\hat{\nu}(x;t,\nu))\ dt\ d\nu,\end{eqnarray*}where \begin{eqnarray*}\hat{t}(x;t,\nu)=t\ \ \mbox{ and }\ \ \hat{\nu}(x;t,\nu)=\nu+\Im\left\{\dfrac{F_x(t,\nu;\ens{D}_h)\ F_x^*(t,\nu;h)}{2\pi|F_x(t,\nu;h)|^2}\right\}.    \end{eqnarray*}$\ens{D}_h(t)=\frac{dh}{dt}(t)$ and $F_x(t,\nu;h)$ is the short-timeFourier transform of $x(t)$ with analysis window $h(t)$.\\\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8cm} c}Name & Description & Default value\\\hline        {\ty x}     & analyzed signal ({\ty Nx=length(x)})\\        {\ty t}     & time instant(s)          & {\ty (1:Nx)}\\        {\ty N}     & number of frequency bins & {\ty Nx}\\        {\ty h}     & frequency smoothing window, {\ty h(0)} being forced to {\ty 1}                                         & {\ty window(odd(N/4))}\\        {\ty trace} & if nonzero, the progression of the algorithm is shown                                         & {\ty 0}\\     \hline {\ty tfr, rtfr} & time-frequency representation and its reassigned            version\\        {\ty hat}   & complex matrix of the reassignment vectors\\\hline\end{tabular*}\vspace*{.2cm}When called without output arguments, {\ty tfrrpmh} runs {\ty tfrqview}.\end{minipage}%\newpage{\bf \large \fontfamily{cmss}\selectfont Example}\begin{verbatim}         sig=fmlin(128,0.1,0.4);          h=window(17,'Kaiser');          tfrrpmh(sig,1:128,64,h,1);\end{verbatim}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}all the {\ty tfr*} functions.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Reference}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] F. Auger, P. Flandrin ``Improving the Readability of Time-Frequency andTime-Scale Representations by the Reassignment Method'' IEEE Transactionson Signal Processing, Vol. 43, No. 5, pp. 1068-89, 1995.\end{minipage}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -