📄 tfrbert.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\renewcommand{\footnoterule}{}
\markright{tfrbert}
\hspace*{-1.6cm}{\Large \bf tfrbert}
\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}
{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Unitary Bertrand time-frequency distribution.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
[tfr,t,f] = tfrbert(x)
[tfr,t,f] = tfrbert(x,t)
[tfr,t,f] = tfrbert(x,t,fmin,fmax)
[tfr,t,f] = tfrbert(x,t,fmin,fmax,N)
[tfr,t,f] = tfrbert(x,t,fmin,fmax,N,trace)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
{\ty tfrbert} generates the auto- or cross- unitary Bertrand
distribution, defined as
\begin{eqnarray*}
B_x(t,\nu) =\nu \int_{-\infty}^{+\infty}
\frac{u/2}{\sinh\left(\frac{u}{2}\right)}\ X\left(\frac{\nu\ u\
e^{-u/2}}{2 \sinh\left(\frac{u}{2}\right)}\right)\ X^*\left(\frac{\nu\ u\
e^{+u/2}}{2 \sinh\left(\frac{u}{2}\right)}\right)\ e^{-j2\pi\nu ut}\ du
\end{eqnarray*}
where $X(\nu)$ is the Fourier transform of $x(t)$.\\
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\
\hline
{\ty x} & signal (in time) to be analyzed. If {\ty x=[x1 x2]}, {\ty tfrbert}
computes the cross-unitary Bertrand distribution {\ty (Nx=length(x))}\\
{\ty t} & time instant(s) on which the {\ty tfr} is evaluated & {\ty (1:Nx)}\\
{\ty fmin, fmax} & respectively lower and upper frequency bounds of
the analyzed signal. These parameters fix the equivalent
frequency bandwidth (expressed in Hz). When unspecified, you
have to enter them at the command line from the plot of the
spectrum. {\ty fmin} and {\ty fmax} must be $>0$ and $\leq 0.5$\\
{\ty N} & number of analyzed voices & auto\footnote{This value,
determined from {\ty fmin} and {\ty fmax}, is the
next-power-of-two of the minimum value checking the non-overlapping
condition in the fast Mellin transform.}\\
{\ty trace} & if nonzero, the progression of the algorithm is shown
& {\ty 0}\\
\hline\end{tabular*}\end{minipage} \newpage
\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\\hline
\hline {\ty tfr} & time-frequency matrix containing the coefficients of the
distribution (x-coordinate corresponds to uniformly sampled
time, and y-coordinate corresponds to a geometrically sampled
frequency). First row of {\ty tfr} corresponds to the lowest
frequency\\
{\ty f} & vector of normalized frequencies (geometrically sampled
from {\ty fmin} to {\ty fmax})\\
\hline
\end{tabular*}
\vspace*{.2cm}
When called without output arguments, {\ty tfrbert} runs {\ty tfrqview}
\end{minipage}
\vspace*{1cm}
{\bf \large \fontfamily{cmss}\selectfont Example}
\begin{verbatim}
sig=altes(64,0.1,0.45);
tfrbert(sig);
\end{verbatim}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
all the {\ty tfr*} functions.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont References}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
[1] J. Bertrand, P. Bertrand ``Time-Frequency Representations of Broad-Band
Signals'' IEEE ICASSP-88, pp. 2196-2199, New-York, 1988.\\
[2] J. Bertrand, P. Bertrand ``A Class of Affine Wigner Functions with
Extended Covariance Properties'', J. Math. Phys.,
Vol. 33, No. 7, July 1992.
\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -