📄 tfrgrd.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrgrd}
\hspace*{-1.6cm}{\Large \bf tfrgrd}
\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}
{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Generalized rectangular time-frequency distribution.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
[tfr,t,f] = tfrgrd(x)
[tfr,t,f] = tfrgrd(x,t)
[tfr,t,f] = tfrgrd(x,t,N)
[tfr,t,f] = tfrgrd(x,t,N,g)
[tfr,t,f] = tfrgrd(x,t,N,g,h)
[tfr,t,f] = tfrgrd(x,t,N,g,h,rs)
[tfr,t,f] = tfrgrd(x,t,N,g,h,rs,alpha)
[tfr,t,f] = tfrgrd(x,t,N,g,h,rs,alpha,trace)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
{\ty tfrgrd} computes the Generalized Rectangular Distribution of a
discrete-time signal {\ty x}, or the cross GRD representation
between two signals. Its expression is :
\[GRD_x(t,\nu)=
\iint_{-\infty}^{+\infty} \dfrac{2 r_s}{|\tau|^{\alpha}}\
\mbox{sinc}\left(\frac{2\pi r_s v}{|\tau|^{\alpha}}\right)\
x(t+v+\frac{\tau}{2})\ x^*(t+v-\frac{\tau}{2})\ e^{-j2\pi \nu \tau}\ dv\
d\tau\] where $r_s$ is a scaling factor which determines the spread of the
low-pass filter, and $\alpha$ is the dissymetry ratio.\\
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8cm} c}
Name & Description & Default value\\
\hline
{\ty x} & signal if auto-GRD, or {\ty [x1,x2]} if cross-GRD {\ty
(Nx=length(x))} \\
{\ty t} & time instant(s) & {\ty (1:Nx})\\
{\ty N} & number of frequency bins & {\ty Nx}\\
{\ty g} & time smoothing window, {\ty G(0)} being forced to
{\ty 1}, where {\ty G(f)} is the Fourier transform of {\ty g(t)}.
& {\ty window(odd(N/10))}\\
{\ty h} & frequency smoothing window, {\ty h(0)} being forced to {\ty 1}.
& {\ty window(odd(N/4))}\\
{\ty rs} & kernel width & {\ty 1}\\
{\ty alpha} & dissymmetry ratio & {\ty 1}\\
{\ty trace} & if nonzero, the progression of the algorithm is shown
& {\ty 0}\\
\hline\end{tabular*}\end{minipage} \newpage
\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\\hline
{\ty tfr} & time-frequency representation\\
{\ty f} & vector of normalized frequencies\\
\hline
\end{tabular*}
\vspace*{.2cm}
When called without output arguments, {\ty tfrgrd} runs {\ty tfrqview}.
\end{minipage}
\vspace*{1cm}
{\bf \large \fontfamily{cmss}\selectfont Example}
\begin{verbatim}
sig=fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4);
g=window(9,'Kaiser'); h=window(27,'Kaiser');
t=1:128; tfrgrd(sig,t,128,g,h,36,1/5,1);
\end{verbatim}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
all the {\ty tfr*} functions.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Reference}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
[1] F. Auger ``Some Simple Parameter Determination Rules for the
Generalized Choi-Williams and Butterworth Distributions'' IEEE Signal
processing letters, Vol 1, No 1, pp. 9-11, Jan. 1994.
\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -