📄 momttfr.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{momttfr}\hspace*{-1.6cm}{\Large \bf momttfr}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Time moments of a time-frequency representation.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[fm,B2] = momttfr(tfr,method)[fm,B2] = momttfr(tfr,method,fbmin)[fm,B2] = momttfr(tfr,method,fbmin,fbmax)[fm,B2] = momttfr(tfr,method,fbmin,fbmax,freqs)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm} {\ty momttfr} computes the time moments of order 1 and 2 of a time-frequency representation\,:\[f_m(t) = \frac{1}{E}\ \int_{-\infty}^{+\infty} f\ \mbox{tfr}(t,f)\ df\ \;\ \ B^2(t) = \frac{1}{E}\ \int_{-\infty}^{+\infty} f^2\ \mbox{tfr}(t,f)\ df -f_m(t)^2.\] \hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline {\ty tfr} & time-frequency representation (size {\ty (N,M)})\\ {\ty method}& chosen representation (name of the corresponding M-file). \\ {\ty fbmin} & smallest frequency bin & {\ty 1}\\ {\ty fbmax} & highest frequency bin & {\ty M}\\ {\ty freqs} & true frequency of each frequency bin. {\ty freqs} must be of length {\ty fbmax-fbmin+1} & auto\footnote{{\ty freqs} goes from 0 to 0.5 or from -0.5 to 0.5 depending on {\ty method}.}\\ \hline {\ty fm} & averaged frequency (first order moment)\\ {\ty B2} & squared frequency bandwidth (second order moment)\\\hline\end{tabular*}\end{minipage}\vspace*{1cm}{\bf \large \fontfamily{cmss}\selectfont Examples}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim} sig=fmlin(200,0.1,0.4); tfr=tfrwv(sig); [fm,B2]=momttfr(tfr,'tfrwv'); subplot(211); plot(fm); subplot(212); plot(B2); freqs=linspace(0,99/200,100); tfr=tfrsp(sig); [fm,B2]=momttfr(tfr,'tfrsp',1,100,freqs); subplot(211); plot(fm); subplot(212); plot(B2);\end{verbatim}\end{minipage}%\newpage\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}The first order moment represents an estimation of the instantaneousfrequency, and the second order moment the variance of this estimator. Wecan see that the estimation is better around the time center position thanat the edges of the observation interval. Besides, the second estimator(using the spectrogram) has a lower variance than the first one (using theWigner-Ville distribution), but presents an important bias.\end{minipage}\vspace*{1cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}momftfr, margtfr.\end{verbatim}\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -