📄 dopnoise.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.
\markright{dopnoise}
\hspace*{-1.6cm}{\Large \bf dopnoise}
\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}
{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Complex doppler random signal.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
[y,iflaw] = dopnoise(N,fs,f0,d,v)
[y,iflaw] = dopnoise(N,fs,f0,d,v,t0)
[y,iflaw] = dopnoise(N,fs,f0,d,v,t0,c)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
{\ty dopnoise} generates a complex noisy doppler signal, normalized
so as to be of unit energy. \\
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\
\hline
{\ty N } & number of points\\
{\ty fs} & sampling frequency (in Hz)\\
{\ty f0} & target frequency (in Hz)\\
{\ty d } & distance from the line to the observer (in meters)\\
{\ty v } & target velocity (in m/s)\\
{\ty t0} & time center & {\ty N/2}\\
{\ty c} & wave velocity (in m/s) & {\ty 340}\\
\hline {\ty y} & output signal\\
{\ty iflaw} & model used as instantaneous frequency law\\
\hline
\end{tabular*}
\vspace*{.2cm}
{\ty [y,iflaw] = dopnoise(N,fs,f0,d,v,t0,c)} returns the signal received by
a fixed observer from a moving target emitting a random broad-band white
gaussian signal whose central frequency is {\ty f0}. The target is moving
along a straight line, which gets closer to the observer up to a distance
{\ty d}, and then moves away. {\ty t0} is the time center (i.e. the time at
which the target is at the closest distance from the observer), and {\ty c}
is the wave velocity in the medium.
\end{minipage}
\newpage
{\bf \large \fontfamily{cmss}\selectfont Example}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Consider such a noisy doppler signal and estimate its instantaneous
frequency (see {\ty instfreq}) :
\begin{verbatim}
[z,iflaw]=dopnoise(500,200,60,10,70,128);
subplot(211); plot(real(z));
subplot(212); plot(iflaw); hold;
ifl=instfreq(z); plot(ifl,'g'); hold;
sum(abs(z).^2)
ans =
1.0000
\end{verbatim}
The frequency evolution is hardly visible from the time representation,
whereas the instantaneous frequency estimation shows it with success. We
check that the energy is equal to 1.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
doppler, noisecg.
\end{verbatim}
\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -