⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 holder.tex

📁 时频分析的工具包
💻 TEX
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{holder}\hspace*{-1.6cm}{\Large \bf holder}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}H鰈der exponent estimation through an affine TFR.\end{minipage}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}h = holder(tfr,f)h = holder(tfr,f,n1)h = holder(tfr,f,n1,n2)h = holder(tfr,f,n1,n2,t)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}        {\ty holder} estimates the H鰈der exponent of a signal through an        affine time-frequency representation of it.  \\\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline        {\ty tfr} & affine time-frequency representation\\         {\ty f}   & frequency values of the spectral analysis\\         {\ty n1}  & indice of the  minimum frequency for the linear regression                                            & {\ty 1}\\        {\ty n2}  & indice of the  maximum frequency for the linear regression                                            & {\ty length(f)}\\        {\ty t} & time vector. If {\ty t} is omitted, the function returns the            global estimate of the H鰈der exponent. Otherwise, it            returns the local estimates {\ty h(t)} at the instants specified            in {\ty t}\\ \hline {\ty h} & output value (if {\ty t} omitted) or vector (otherwise) containing            the H鰈der estimate(s)\\\hline\end{tabular*}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Example}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}For instance, we consider a 64-points Lipschitz singularity (see {\ty  anasing}) of strength {\ty h=0}, centered at {\ty t0=32}, analyze it with the  scalogram (Morlet wavelet with half-length = 4), and estimate its H鰈der  exponent,\begin{verbatim}         sig=anasing(64);         [tfr,t,f]=tfrscalo(sig,1:64,4,0.01,0.5,256,1);         h=holder(tfr,f,1,256,1:64);\end{verbatim}the value obtained at time {\ty t0} is a good estimation of {\ty h} (we obtain{\ty h(t0)=-0.0381}).\\ \end{minipage}%\newpage{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}anastep, anapulse, anabpsk, doppler.\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Reference}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] S. Jaffard ``Exposants de H鰈der en des points donn閟 et coefficientsd'ondelettes'' C.R. de l'Acad閙ie des Sciences, Paris, t. 308, S閞ie I,p. 79-81, 1989.\\[2] P. Gon鏰lv鑣, P. Flandrin ``Scaling Exponents Estimation FromTime-Scale Energy Distributions'' IEEE ICASSP-92, pp. V.157 - V.160, SanFransisco 1992.\end{minipage}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -