📄 locfreq.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.
\markright{locfreq}
\hspace*{-1.6cm}{\Large \bf locfreq}
\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}
{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Frequency localization characteristics.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
[fm,B] = locfreq(x)
\end{verbatim}
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
{\ty locfreq} computes the frequency localization characteristics of
signal {\ty x}. The definition used for the averaged frequency
and the frequency spreading are the following\,:
\begin{eqnarray*}
f_m &=& \frac{1}{E_x}\ \int_{-\infty}^{+\infty} \nu\ |X(\nu)|^2\ d\nu\\
B &=& 2\ \sqrt{\frac{\pi}{E_x}\ \int_{-\infty}^{+\infty} (\nu-f_m)^2\
|X(\nu)|^2\ d\nu }
\end{eqnarray*}
where $E_x$ is the energy of the signal and $X(\nu)$ the Fourier transform
of $x(t)$. With this definition (and the one used in {\ty loctime}), the
Heisenberg-Gabor inequality writes $B\ T\geq 1$.\\
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\
\hline
{\ty x} & signal\\
\hline {\ty fm} & averaged normalized frequency center\\
{\ty B} & frequency spreading\\
\hline
\end{tabular*}
\end{minipage}
\vspace*{1cm}
{\bf \large \fontfamily{cmss}\selectfont Example}
\begin{verbatim}
z=amgauss(160,80,50).*fmconst(160,0.2);
[fm,B]=locfreq(z); [fm,B]
ans =
0.2000 0.0200
\end{verbatim}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
loctime.
\end{verbatim}
\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -