📄 amgauss.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{amgauss}\hspace*{-1.6cm}{\Large \bf amgauss}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Gaussian amplitude modulation.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}y = amgauss(N)y = amgauss(N,t0)y = amgauss(N,t0,T)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm} {\ty amgauss} generates a gaussian amplitude modulation centered on a time {\ty t0}, and with a spread proportional to {\ty T}. This modulation is scaled such that {\ty y(t0)=1} and {\ty y(t0+T/2)} and {\ty y(t0-T/2)} are approximately equal to 0.5~: $$y(t)=e^{-\pi\left({t-t_0\over T}\right)^2}$$\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline {\ty N} & number of points\\ {\ty t0} & time center & {\ty N/2}\\ {\ty T} & time spreading & {\ty 2*sqrt(N)}\\ \hline {\ty y} & signal\\\hline\end{tabular*}\end{minipage}\vspace*{1cm}{\bf \large \fontfamily{cmss}\selectfont Examples}\begin{verbatim} z=amgauss(160); plot(z); z=amgauss(160,90,40); plot(z); z=amgauss(160,180,50); plot(z);\end{verbatim}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}amexpo1s, amexpo2s, amrect, amtriang.\end{verbatim}\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -