⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tfrwv.tex

📁 时频分析的工具包
💻 TEX
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrwv}\hspace*{-1.6cm}{\Large \bf tfrwv}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Wigner-Ville time-frequency distribution.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[tfr,t,f] = tfrwv(x)[tfr,t,f] = tfrwv(x,t)[tfr,t,f] = tfrwv(x,t,N)[tfr,t,f] = tfrwv(x,t,N,trace)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}        {\ty tfrwv} computes the Wigner-Ville distribution of a        discrete-time signal {\ty x}, or the cross Wigner-Ville        representation between two signals. The continuous expression of        the Wigner-Ville distribution writes\begin{eqnarray*}W_x(t,\nu)=\int_{-\infty}^{+\infty} x(t+\tau/2)\ x^*(t-\tau/2)\ e^{-j2\pi\nu \tau}\ d\tau,   \end{eqnarray*} \hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8cm} c}Name & Description & Default value\\\hline        {\ty x}     & signal if auto-WV, or {\ty [x1,x2]} if cross-WV {\ty			(Nx=length(x))}\\         {\ty t}     & time instant(s)          & {\ty (1:Nx)}\\        {\ty N}     & number of frequency bins & {\ty Nx}\\        {\ty trace} & if nonzero, the progression of the algorithm is shown                                         & {\ty 0}\\     \hline {\ty tfr}   & time-frequency representation. \\        {\ty f}     & vector of normalized frequencies\\ \hline\end{tabular*}\vspace*{.2cm}When called without output arguments, {\ty tfrwv} runs {\ty tfrqview}.\end{minipage}\vspace*{1cm}{\bf \large \fontfamily{cmss}\selectfont Example}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}The Wigner-Ville distribution is perfectly localized on linear chirpsignals. Here is what we obtain in the discrete case :\begin{verbatim}         sig=fmlin(128,0.1,0.4);           tfrwv(sig);\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}all the {\ty tfr*} functions.\end{minipage}%\newpage{\bf \large \fontfamily{cmss}\selectfont References}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] E. Wigner ``On the Quantum Correction for Thermodynamic Equilibrium''Phys. Res., Vol. 40, pp. 749-759, 1932.\\[2] J. Ville ``Th閛rie et Application de la Notion de Signal Analytique''C鈈les et Transmission, 2eme A. , No. 1, pp. 61-74, 1948.\\[3] T. Claasen, W. Mecklenbrauker ``The Wigner Distribution - A Tool forTime-Frequency Signal Analysis'' {\it 3 parts} PhilipsJ. Res., Vol. 35, No. 3, 4/5, 6, pp. 217-250, 276-300, 372-389, 1980.\end{minipage}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -