📄 ambifunb.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{ambifunb}\hspace*{-1.6cm}{\Large \bf ambifunb}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Narrow-band ambiguity function.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[naf,tau,xi] = ambifunb(x)[naf,tau,xi] = ambifunb(x,tau)[naf,tau,xi] = ambifunb(x,tau,N)[naf,tau,xi] = ambifunb(x,tau,N,trace)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm} {\ty ambifunb} computes the narrow-band ambiguity function of a signal, or the cross-ambiguity function between two signals. Its definition is given by\[A_x(\xi,\tau)=\int_{-\infty}^{+\infty} x(s+\tau/2)\ x^*(s-\tau/2)\e^{-j2\pi \xi s}\ ds.\] \hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\ \hline {\ty x} & signal if auto-AF, or {\ty [x1,x2]} if cross-AF ({\ty length(x)=Nx})&\\ {\ty tau} & vector of lag values &{\ty (-Nx/2:Nx/2)}\\ {\ty N} & number of frequency bins &{\ty Nx}\\ {\ty trace} & if non-zero, the progression of the algorithm is shown&{\ty 0}\\ \hline{\ty naf} & doppler-lag representation, with the doppler bins stored in the rowsand the time-lags stored in the columns&\\ {\ty xi} & vector of doppler values\\\hline\end{tabular*}\vspace*{.5cm}This representation is computed such as its 2D Fourier transform equals theWigner-Ville distribution. When called without output arguments, {\tyambifunb} displays the squared modulus of the ambiguity function by meansof {\ty contour}.The ambiguity function is a measure of the time-frequency correlation of asignal $x$, i.e. the degree of similarity between $x$ and its translatedversions in the time-frequency plane.\end{minipage}\vspace*{1cm}\newpage{\bf \large \fontfamily{cmss}\selectfont Examples}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Consider a BPSK signal (see {\ty anabpsk}) of 256 points, with a keyingperiod of 8 points, and analyze it with the narrow-band ambiguityfunction\,:\begin{verbatim} sig=anabpsk(256,8); ambifunb(sig);\end{verbatim}The resulting function presents a high thin peak at the origin of theambiguity plane, with small sidelobes around. This means that theinter-correlation between this signal and a time/frequency-shifted versionof it is nearly zero (the ambiguity in the estimation of its arrival timeand mean-frequency is very small).\\Here is an other example that checks the correspondance between the WVD andthe narrow-band ambiguity function by means of a 2D Fourier transform\,:\begin{verbatim} N=128; sig=fmlin(N); amb=ambifunb(sig); amb=amb([N/2+1:N 1:N/2],:); ambi=ifft(amb).'; tdr=zeros(N); % Time-delay representation tdr(1:N/2,:)=ambi(N/2:N-1,:); tdr(N:-1:N/2+2,:)=ambi(N/2-1:-1:1,:); wvd1=real(fft(tdr)); wvd2=tfrwv(sig); diff=max(max(abs(wvd1-wvd2))) diff = 1.5632e-13\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}ambifuwb.\end{verbatim}\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -