📄 ambifuwb.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{ambifuwb}\hspace*{-1.6cm}{\Large \bf ambifuwb}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Wide-band ambiguity function.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[waf,tau,theta] = ambifuwb(x)[waf,tau,theta] = ambifuwb(x,fmin,fmax)[waf,tau,theta] = ambifuwb(x,fmin,fmax,N)[waf,tau,theta] = ambifuwb(x,fmin,fmax,N,trace)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm} {\ty ambifuwb} calculates the asymetric wide-band ambiguity function, defined as \begin{eqnarray*}\Xi_x(a,\tau) = \frac{1}{\sqrt{a}}\ \int_{-\infty}^{+\infty} x(t)\x^*(t/a-\tau)\ dt = \sqrt{a} \int_{-\infty}^{+\infty} X(\nu)\ X^*(a\nu)\e^{j2\pi a \tau\nu}\ d\nu. \end{eqnarray*}\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline {\ty x} & signal (in time) to be analyzed (the analytic associated signal is considered), of length {\ty Nx} &\\ {\ty fmin, fmax} & respectively lower and upper frequency bounds of the analyzed signal. When specified, these parameters fix the equivalent frequency bandwidth (both are expressed in Hz) & {\ty 0, 0.5}\\ {\ty N} & number of Mellin points. This number is needed when {\ty fmin} and {\ty fmax} are forced & {\ty Nx}\\ {\ty trace} & if non-zero, the progression of the algorithm is shown & 0\\\hline {\ty waf} & matrix containing the coefficients of the ambiguity function. X-coordinate corresponds to the dual variable of scale parameter ; Y-coordinate corresponds to time delay, dual variable of frequency.\\ {\ty tau} & X-coordinate corresponding to time delay\\ {\ty theta} & Y-coordinate corresponding to the $\log(a)$ variable, where $a$ is the scale\\\hline\end{tabular*}\vspace*{.2cm}When called without output arguments, {\ty ambifuwb} displays the squaredmodulus of the ambiguity function by means of {\ty contour}.\end{minipage}\newpage{\bf \large \fontfamily{cmss}\selectfont Example}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Consider a BPSK signal (see {\ty anabpsk}) of 256 points, with a keyingperiod of 8 points, and analyze it with the wide-band ambiguityfunction\,:\begin{verbatim} sig=anabpsk(256,8); ambifunb(sig);\end{verbatim}The result, to be compared with the one obtained with the narrow-bandambiguity function, presents a thin high peak at the origin of theambiguity plane, but with more important sidelobes than with thenarrow-band ambiguity function. It means that the narrow-band assumption isnot very well adapted to this signal, and that the ambiguity in theestimation of its arrival time and mean frequency is not so small.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}ambifunb.\end{verbatim}\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -