📄 fmt.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{fmt}\hspace*{-1.6cm}{\Large \bf fmt}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Fast Mellin Transform.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[mellin,beta] = fmt(x)[mellin,beta] = fmt(x,fmin,fmax)[mellin,beta] = fmt(x,fmin,fmax,N)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm} {\ty fmt} computes the Fast Mellin Transform of signal {\ty x}.\\ \hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}Name & Description & Default value\\\hline {\ty x} & signal in time\\ {\ty fmin, fmax} & respectively lower and upper frequency bounds of the analyzed signal. These parameters fix the equivalent frequency bandwidth (expressed in Hz). When unspecified, you have to enter them at the command line from the plot of the spectrum. {\ty fmin} and {\ty fmax} must be between 0 and 0.5\\ {\ty N} & number of analyzed voices. {\ty N} must be even & auto\footnote{This value, determined from {\ty fmin} and {\ty fmax}, is the next-power-of-two of the minimum value checking the non-overlapping condition in the fast Mellin transform.}\\\hline {\ty mellin} & the {\ty N}-points Mellin transform of signal {\ty x}\\ {\ty beta} & the {\ty N}-points Mellin variable\\ \hline\end{tabular*}\vspace*{.5cm}The Mellin transform is invariant in modulus to dilations, and decomposesthe signal on a basis of hyperbolic signals. This transform can be definedas\,:\[M_x(\beta)=\int_0^{+\infty} x(\nu)\ \nu^{j2\pi \beta-1}\ d\nu\]where $x(\nu)$ is the Fourier transform of the analytic signalcorresponding to $x(t)$. The $\beta$-parameter can be interpreted as a {\ithyperbolic modulation rate}, and has no dimension\,; it is called the {\itMellin's scale}. In the discrete case, the Mellin transform can be calculated rapidly usinga fast Fourier transform ({\ty fft}). The fast Mellin transform is used,for example, in the computation of the affine time-frequency distributions.\end{minipage}%\newpage{\bf \large \fontfamily{cmss}\selectfont Example}\begin{verbatim} sig=altes(128,0.05,0.45); [mellin,beta]=fmt(sig,0.05,0.5,128); plot(beta,real(mellin));\end{verbatim}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}ifmt, fft, ifft.\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont References}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] J. Bertrand, P. Bertrand, J-P. Ovarlez ``Discrete Mellin Transform forSignal Analysis'' Proc IEEE-ICASSP, Albuquerque, NM USA, 1990.\\[2] J-P. Ovarlez, J. Bertrand, P. Bertrand ``Computation of AffineTime-Frequency Representations Using the Fast Mellin Transform'' ProcIEEE-ICASSP, San Fransisco, CA USA, 1992.\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -