📄 lambdak.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.
\markright{lambdak}
\hspace*{-1.6cm}{\Large \bf lambdak}
\vspace*{-.4cm}
\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}
\vspace*{.2cm}
{\bf \large \fontfamily{cmss}\selectfont Purpose}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Evaluate lambda function for Affine Wigner distribution.
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
Y=lambdak(U,K)
\end{minipage}
\vspace*{.5cm}
{\bf \large \fontfamily{cmss}\selectfont Description}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
Y=lambdak(U,K) evaluates the parametrization lambda function
involved in the affine smoothed pseudo Bertrand distribution.\\
$LAMBDAK(U,0) = -U/(exp(-U)-1)$ for K = 0
$LAMBDAK(U,1) = exp(1+U exp(-U)/(exp(-U)-1))$ for K = 1
$LAMBDAK(U,K) = (K (exp(-U)-1)/(exp(-KU)-1))^(1/(K-1))$ otherwise\\
\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8.5cm} c}
Name & Description & Default value\\
\hline
U & real vector\\
Y & value of LAMBDAD at point(s) U\\
\hline
\end{tabular*}
\end{minipage}
\vspace*{1cm}
{\bf \large \fontfamily{cmss}\selectfont See Also}\\
\hspace*{1.5cm}
\begin{minipage}[t]{13.5cm}
\begin{verbatim}
LAMBDAB, LAMBDAU, LAMBDAD.
\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -